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Abstract
Objectives: A novel analysis was undertaken to select a significant ultrasonographic parameter (USP) for classifying fetuses to support artificial
neural network (ANN), and thus to enhance the accuracy of fetal weight estimation.
Methods: In total, 2127 singletons were examined by prenatal ultrasound within 3 days before delivery. First, correlation analysis was used to
determine a significant USP for fetal grouping. Second, K-means algorithm was utilized for fetal size classification based on the selected USP.
Finally, stepwise regression analysis was used to examine input parameters of the ANN model.
Results: The estimated fetal weight (EFW) of the new model showed mean absolute percent error (MAPE) of 5.26 � 4.14% and mean absolute
error (MAE) of 157.91 � 119.90 g. Comparison of EFW accuracy showed that the new model significantly outperformed the commonly-used
EFW formulas (all p < 0.05).
Conclusion: We proved the importance of choosing a specific grouping parameter for ANN to improve EFW accuracy.
Copyright � 2012, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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1. Introduction

It is very important to assess estimated fetal weight (EFW)
accurately in obstetrics. Nowadays, ultrasound (US) is a major
tool for EFW. Most published formulas of EFW are derived
from 2D US parameters (USPs), such as biparietal diameter
(BPD), occipito-frontal diameter (OFD), abdominal circum-
ference (AC), and femur length (FL). Although EFW by
regression methods is relatively acceptable in clinical
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obstetrics [1e9], the accuracy of EFW needs to be improved.
As birth weight (BW) varies with gestation age and the
distribution of BW was negatively skewed [10], in conflict
with the normal distribution hypothesis for the commonly-
used regression models.

Sabbagha et al [11] proposed a classification of three
subgroups according to the gestational age (GA) and percen-
tiles of AC for EFW in large-, appropriate-, and small-for-
gestational-age fetuses. Their errors of EFW were reduced
as compared with previous regression formulas. However,
their method of fetal classification by GA and AC is prone to
the errors of uncertain GA for women with irregular menstrual
cycles.

The artificial neural network (ANN) is a nonlinear statis-
tical data modeling tool where the complex relationships
between inputs and outputs are modeled [12]. Recently, it was
cs & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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shown that estimating fetal weight using ANN models was
more accurate as compared with regression methods. Never-
theless, Farmer et al [13] focused mainly on macrosomia and
did not cover the entire range of fetal weight. Chuang et al [14]
reported another ANN model of EFW, covering 200e4400 g.
Although their results showed ANN model could provide more
accurate EFW than before, their EFW was less accurate in
actual fetal body weights below 2500 g and above 4000 g.

In fact, the accuracy of EFW is affected by multiple vari-
ables and the variations among USPs in different groups of
fetuses. It is necessary to determine significant variables and to
classify fetuses for reducing errors in EFW. In medical liter-
ature, most articles revealed EFW was less accurate in small-
and large-for-gestational groups when using a regression
formula or an ANN model only and entirely. In this study, we
proposed a novel grouping approach conjoined with an ANN
model to improve the accuracy of EFW estimation.
2. Materials and methods

Specifically, the aims of this study were: (1) to use corre-
lation analysis to cross-validate the significance among USPs;
and (2) to utilize K-means algorithm to classify fetal size with
regard to the discriminative classes for the training of the ANN
to enhance the EFW accuracy. The accuracy of our novel
classification-ANN model was examined by comparing with
the regression-based EFW formulas. Fig. 1 depicts the flow
chart of overall experiment.
Fig. 1. Flow chart of the method used in this research. AC ¼ abdominal

circumference; BPD ¼ biparietal diameter; BW ¼ birth weight; FL ¼ femur

length; FP ¼ fetal presentation; GA ¼ gestational age; HC ¼ head circum-

ference; OFD ¼ occipito-frontal diameter; SEX ¼ gender.
3. Data collection

A retrospective study was undertaken in National Cheng
Kung University Hospital. Informed consents were obtained
from the pregnant women before US examinations, which
included agreement for further data analysis without showing
the personal identification data to the analysts. This study was
approved by the Institutional Review Board of National Cheng
Kung University Hospital (IRB: ER-99-011). All the fetuses
were examined by US within 3 days prior to delivery. Fetal US
examinations were undertaken by using conventional US
scanners (GE Voluson 730 Expert, Milwaukee, WI, USA;
Medison Accuvix V20, Seoul, Korea; Aloka SSD-680, Tokyo,
Japan), with 3.5e5.0 MHz convex transducers. Anomalous
fetuses, multiple gestations and fetuses not delivered within 3
days were excluded from this study. The collected data were
further examined to exclude those with missing data or
unreasonable code. A total of 2127 consecutive singleton
fetuses were used in this study. The data of total fetuses were
randomly divided into training and testing groups. According
to our study design, 1489 fetuses (70%) were randomly
assigned to the training group for the ANN model training, and
the other 638 fetuses (30%) were used to validate the ANN
model. The concept of v-fold cross validation and the similar
criterion of 7:3 of our previous study [14] were adopted to
randomly separate the training and the test datasets; the
evaluation was performed five times.
4. Determination of significant parameter for fetal size
classification
4.1. USP assessment
USP measurement included numerical variables, e.g., BPD,
OFD, AC, head circumference (HC), FL, GA, BW, and
nominal variables, e.g., gender (SEX) and fetal presentation
(FP). The BW for each fetus was recorded for comparing with
EFW. Fetal AC was calculated by:

AC¼ p

2
� ðAPDþATDÞ ð1Þ

where APD is abdominal anteroposterior diameter and ATD
is abdominal transverse diameter. GA (unit: weeks) was
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based on the first day of the last normal menstrual period
and confirmed by first-trimester ultrasound scan. In this
study, GAs for all cases required both the date of last
menstrual period and US confirmation [6,15,16]. FPs were
divided into vertex and malpresentation groups according to
US examination. Fetuses with breech or transverse
presentations were represented in the malpresentation
group.
4.2. Descriptive statistics and correlation analysis
To describe the distribution of data, numerical data were
checked for normal distribution using the Kolmogorov-
Smirnov test [17]. Item analysis containing criterion of
internal consistency and correlation analysis were used to
observe the characteristics and discrimination of parameters.
The critical ratio of each parameter was calculated and
tested to determine which parameters were selected for test
inclusion or deleted for test exclusion [18]. During the
parameter selection processing, item screening was per-
formed first to evaluate the usefulness of all the adopted
USPs. In the process, the observations in each parameter
were sorted and fractionally categorized into front, middle,
and behind parts with predefined levels. In this study, the
front part at a level of 27% and the behind part at a level of
27%, named as high score and low score groups [19],
respectively, were extracted and tested by using t test. The
parameters with a significance of p < 0.05 were used for the
following experiment.

The distribution property of each parameter showed that the
tendency was negatively skewed. It was necessary to classify
the fetuses to reduce the effect of data sparseness. Spearman
correlation analysis was then used to determine which USP
was highly correlated with the BW. A low correlation coeffi-
cient suggested that the relationship between two parameters
was weak or nonexistent. The AC had a higher correlation
coefficient than other USPs, so it was selected as the basis for
grouping fetuses.
Fig. 2. Input selection for each artificial neural network (ANN) group model. AC

FP ¼ fetal presentation; GA ¼ gestational age; HC ¼ head circumference; OFD ¼
5. AC-based group analysis
5.1. Fetal size classification using K-means algorithm
K-means algorithm is used to cluster fetuses with similar
body size based on AC, and also to reduce the effects of date
sparseness: qk denotes the mean value of the kth cluster; xf is
the AC of the fth fetus;F denotes the total number of fetuses.
The K-means algorithm [20,21] is used to cluster fetuses into
K clusters as:

1. Choose arbitrary initial estimates qkð0Þ from fxf jf ¼
1;/;Fg for qk k ¼ 1;/;K

2. Repeat

a. For f ¼ 1 to F

i. Determine the closest representative, say qk for xf .
ii. Set bðf Þ ¼ k.

b. End {For}

c. For k ¼ 1 to K
i. Parameter updating: determine qk as the mean value of

xf with bðf Þ ¼ k.

d. End {For}

3. Until no change occurs for all qk between two successive
iterations.

K-means is used to classify fetal size to reduce body size
heterogeneities between fetuses. Stepwise regression is utilized
for each group to select input parameters for the ANN model.
5.2. ANN input parameters selection for each group
using stepwise regression
Stepwise estimation [22,23] is used to select input param-
eters by examining the contribution to the ANN model
(Fig. 2). The parameter most highly correlated with the BW is
¼ abdominal circumference; BPD ¼ biparietal diameter; FL ¼ femur length;

occipito-frontal diameter; SEX ¼ gender.



Table 1

The sample sizes in the training set and the testing set for the artificial neural

network (ANN) model.

Groups Sample sizes in

the training set

Sample sizes in

the testing set

Total

Low BW group (Group I) n11 ¼ 70 n12 ¼ 32 102

Normal BW group (Group II) n21 ¼ 735 n22 ¼ 309 1044

High BW group (Group III) n31 ¼ 684 n32 ¼ 297 981

Total 1489 638 2127

BW ¼ birth weight.
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selected first. In addition, independent parameters are selected
for inclusion based on the incremental contribution over the
parameter already in the model. Independent parameters may
also be dropped if their predictive power drops to a nonsig-
nificant level when another independent parameter is added to
the model [22,23].

6. EFW using the ANN algorithm

This study used a back propagation network to establish the
ANN model [12]. After AC group analysis, three back prop-
agation networks were developed for EFW. Fig. 3 illustrates
the architecture of the ANN model. Fetuses in each group
were randomly divided into a training set and a testing set. In
the training set, Group I consisted of 70 samples, Group II 735
samples, and Group III 684 samples, respectively (n11 ¼ 70,
n21 ¼ 735, n31 ¼ 684). In the testing set, Group I consisted of
32 samples, Group II 309 samples, and Group III 297 samples,
respectively (n12 ¼ 32, n22 ¼ 309, n32 ¼ 297). The numbers of
train and testing fetuses for each group are shown in Table 1.
The used ANN model has an input layer, a hidden layer, and
an output layer. The number of neurons for each layer is
described in Table 2. The input vector p in the input layer has
R input parameters that are selected by the stepwise estimation
method. The transfer function f 1 is the hyperbolic-tangent-
sigmoid function in the hidden layer and f 2 is a linear func-
tion in the output layer for all three groups.

In the low BWgroup (Group I), the input layer includes three
parameters, the hidden layer has 12 neurons, and the output
layer has a neuron. In the normal BWgroup (Group II), the input
layer includes six parameters, the hidden layer has 14 neurons,
and the output layer has a neuron. In the high BW group (Group
III), the input layer includes five parameters, the hidden layer
has 12 neurons, and the output layer has a neuron. The conjugate
gradient method is used to train neural network for optimizing
Fig. 3. Illustration of the architecture of the artificial neural network (ANN) mod

length; FP ¼ fetal presentation; GA ¼ gestational age; HC ¼ head circumference
the performance of the ANNmodel. This study made use of the
MATLAB software package to perform the ANN algorithm.

7. Accuracy comparison and performance evaluation

The error of fetal weights estimated by the proposed novel
ANN model was compared with regression-based formulas
listed in Table 3, including Hsieh’s formula 1B [6], Hsieh’s
formula 2B [6], and Hadlock’s formula [5].

Two indexes, mean absolute error (MAE), and mean
absolute percent error (MAPE), were calculated from EFW
and actual BWs. Equations are represented as follow:

MAE¼ 1

n

Xn

i¼1

��Xi � bXi

�� ð2Þ

MAPE¼ 1

n

Xn

i¼1

��Xi � bXi

��
Xi

� 100% ð3Þ

where n is the number of fetuses. Xi and bXi are the BW and
EFW of the ith fetus.

Because MAE and MAPE were not normally distributed,
the Friedman test was used for comparing the performance of
the proposed ANN model with three regression-based
methods. Significance was defined as p < 0.05. Data
el. AC ¼ abdominal circumference; BPD ¼ biparietal diameter; FL ¼ femur

; OFD ¼ occipito-frontal diameter; SEX ¼ gender.



Table 2

Input parameters, the number of neurons, and transfer function of the artificial neural network (ANN) model.

Groups Items ANN

Input layer Hidden layer Output layer

Low BW group (Group I) Parameters for inclusion (R) GA, BPD, AC (R ¼ 3)

Number of neurons (S ) S1¼12 S2¼1

Transfer function ( f ) Hyperbolic tangent sigmoid ( f1) Linear ( f2)

Normal BW group (Group II) Parameters for inclusion (R) AC, BPD, GA, FL, SEX, HC (R ¼ 6)

Number of neurons (S ) S1¼14 S2¼1

Transfer function ( f ) Hyperbolic tangent sigmoid ( f1) Linear ( f2)

High BW group (Group III) Parameters for inclusion (R) AC, BPD, SEX, FL, FP (R ¼ 5)

Number of neurons (S ) S1¼12 S2¼1

Transfer function ( f ) Hyperbolic tangent sigmoid ( f1) Linear ( f2)

AC ¼ abdominal circumference; BPD ¼ biparietal diameter; BW ¼ birth weight; FL ¼ femur length; FP ¼ fetal presentation; GA ¼ gestational age; HC ¼ head

circumference; SEX ¼ gender.
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management and statistical analysis were performed using
SPSS for Windows version 15.0 (SPSS Inc., Chicago, IL,
USA) and STATISTICA version 8 (StatSoft Inc., USA).

8. Results
8.1. Data description
The range of BWs of 2127 babies was 500e4736 g. GAs at
birth ranged from 21 weeks to 43 weeks. The mean � standard
deviation (SD) for each parameter: BW 3062.7 � 604.7 g, AC
was 32.6 � 3.3 cm, BPD was 9.1 � 0.7 cm, OFD was
11.0� 0.9 cm, FLwas 6.8� 0.6 cm, HCwas 31.6� 2.3 cm and
GAwas 38.5� 3.1 weeks. The Kolmogorov-Smirnov test ( p<
0.05) revealed that all numeric data had non-normal distribu-
tions.Moreover, the distribution for each parameter showed that
the tendency was negatively skewed (SkewnessBW ¼ �1.72,
SkewnessAC ¼ �2.13, SkewnessBPD ¼ �3.13, Skew-
nessOFD¼�1.48, SkewnessFL¼�2.96, SkewnessHC¼�2.69,
SkewnessGA ¼ �3.14) and the peakedness was a leptokurtosis
(KurtosisBW ¼ 5.14, KurtosisAC ¼ 7.24, KurtosisBPD ¼ 13.23,
KurtosisOFD ¼ 5.10, KurtosisFL ¼ 12.13, KurtosisHC ¼ 11.18,
KurtosisGA ¼ 12.16), as illustrated in Fig. 4. In the process of
preliminary parameter selection, the numerical parameters with
significant discrimination include AC, BPD, OFD, HC, FL, and
GA. The t values for each parameter were as follows: AC was
t1164, 0.95¼ 41.65*, BPDwas t1468, 0.95¼ 32.44*, OFDwas t1254,
0.95 ¼ 50.29*, HC was t1179, 0.95 ¼ 37.28*, FL was t1387,
0.95¼ 35.44*, and GAwas t1269, 0.95¼ 30.73*. The results of the
item analysis were shown in Table 4.
Table 3

Three published regression methods.

References Formulas

Hsieh’s

formula 1B (1987)

log10BW ¼ 5:6541� 10�3 � AC� BPD� 1:5515� 1

Hsieh’s

formula 2B (1987)

log10BW ¼ 9:4962� 10�3 � AC� BPD� 0:1432� F

Hadlock’s

formula (1985)

log10BW ¼ 1:304þ 0:05281� ACþ 0:1938� FL� 0

AC ¼ abdominal circumference; BPD ¼ biparietal distance; BW ¼ birth weight;
8.2. Strong correlation between USP and BW
The Spearman correlation between each parameter and BW
has a positive coefficient, as shown in Table 5. The scatter
plots of BWand USP are illustrated in Fig. 5. In particular, AC
showed strong positive correlation to BW (r ¼ 0.81, p < 0.01).
The AC has a higher correlation coefficient than other USPs,
so it is selected as the basis for grouping fetuses.
8.3. Fetal size grouping with their respective
discriminative parameters
The scatter plots of BW and AC are illustrated in Fig. 6:
low BW group (Group I), r ¼ 0.92, p < 0.01, n ¼ 102; normal
BW group (Group II), r ¼ 0.61, p < 0.01, n ¼ 1,044; high BW
group (Group III), r ¼ 0.64, p < 0.01, n ¼ 981.
The mean � SD (range) of fetal AC in Groups I, II, and III
were 21.8 � 3.5 cm (15.7e26.5 cm), 31.5 � 1.4 cm
(26.7e33.1 cm), and 34.8 � 1.2 cm (33.3e39.9 cm), respec-
tively. The BWs for three groups classified by AC were
1124.1 � 524.4 g for Group I, 2919.7 � 336.0 g for Group II,
and 3416.5 � 326.6 g for Group III.

Table 2 shows the selected parameters of each group. In
Group I, the input layer includes three parameters of GA,
BPD, and AC (R2 ¼ 0.95, n ¼ 102). In Group II, the input
layer includes six parameters of AC, BPD, GA, FL, SEX, and
HC (R2 ¼ 0.72, n ¼ 1,044). In Group III, the input layer
includes five parameters of AC, BPD, SEX, FL, and FP
(R2 ¼ 0.61, n ¼ 981).
0�4 � AC2 � BPDþ 1:9782� 10�5 � AC3 þ 5:2594� 10�2 � BPDþ 2:1315

L� 7:6742� 10�4 � AC� BPD2 þ 1:7450� 10�3 � BPD2 � FLþ 2:7193

:004� AC� FL

FL ¼ Femur length.



Fig. 4. The distribution for each parameter. (A) BW ¼ birth weight; (B) AC ¼ abdominal circumference; (C) BPD ¼ biparietal diameter; (D) OFD ¼ occipito-

frontal diameter; (E) FL ¼ femur length; (F) HC ¼ head circumference; (G) GA ¼ gestational age; n ¼ 2,127.
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8.4. The accuracy comparison of fetal weight estimation
As shown in Table 6, the MAPE and MAE of the proposed
method were 7.1 � 6.1% and 83.5 � 82.8 g for Group I,
5.4 � 4.6% and 157.2 � 131.2 g for Group II, and 4.9 � 3.2%
and 166.7 � 107.9 g for Group III, respectively. By lumping
total estimation errors together, the MAPE and MAE were
5.3 � 4.1% and 157.9 � 119.9 g for the proposed method,
6.0 � 4.6% and 173.2 � 120.3 g for the Hsieh 1B model,
6.5 � 7.2% and 175.1 � 120.4 g for the Hsieh 2B model, and
7.4 � 5.3% and 224.6 � 169.0 g for the Hadlock model,
respectively. The results of the Friedman test showed that the
MAPE and MAE had statistical differences among the four
methods, as shown in Table 7. The results of the multiple-
comparisons procedure showed that the MAPE and MAE of
three pairs had statistical differences. The three pairs were
compared as follows: (1) the proposed method and the Hsieh’s
Table 4

Item analysis of numerical parameters.

Item Group N Mean SD df t value p

AC High score 576 35.60 1.07 1164 41.65* <0.05

Low score 590 28.92 3.74

BPD High score 750 9.59 0.18 1468 32.44* <0.05

Low score 720 8.53 0.86

OFD High score 667 11.86 0.35 1254 50.29* <0.05

Low score 589 9.96 0.86

HC High score 595 33.57 0.69 1179 37.28* <0.05

Low score 586 29.10 2.82

FL High score 677 7.25 0.15 1387 35.44* <0.05

Low score 712 6.26 0.73

GA High score 640 40.56 0.70 1269 30.73* <0.05

Low score 631 35.45 4.11

AC ¼ abdominal circumference; BPD ¼ biparietal distance; df ¼ degree of

freedom; FL ¼ femur length; GA ¼ gestational age; HC ¼ head circumfer-

ence; OFD ¼ occipito-frontal diameter; SD ¼ standard deviation.
* The difference was statistically significant using the t test.
formula 1B method; (2) the proposed method and the Hsieh’s
formula 2B method; and (3) the proposed method and the
Hadlock’s method. Our proposed approach is significantly
better than the three regression methods using the Friedman
test. The highly significant correction between the actual BW
and the EFW by the proposed method of the testing set, the
scatter plot of actual BW, and fetal weight estimation by this
study ANN model (r ¼ 0.95, R2 ¼ 0.89, n ¼ 638) is illustrated
in Fig. 7. It shows that the inputeoutput relationship was
a straight line.

9. Discussion

We have shown an efficient classification framework
combined with an ANN model for improving EFW accuracy
in the wider range of gestation period and fetal weight from
the database of 2127 babies. Full term infants (GAs from
37e42 weeks) are in the majority in this study. When applying
the regression models, researchers have to assume that the
distribution of their subjects is “normally” distributed.
However, BWs are not normally distributed and might be
inappropriate to use the regression models derived EFW
Table 5

The correlation coefficient of each parameter and birth weight (BW).

Groups Correlation coefficients (g)

AC BPD FL HC OFD

Low BW group (Group I) 0.92** 0.92** 0.92** 0.92** 0.89**

Normal BW group (Group II) 0.61** 0.53** 0.44** 0.47** 0.31**

High BW group (Group III) 0.64** 0.46** 0.24** 0.38** 0.25**

Total (non-grouped) 0.81** 0.58** 0.51** 0.54** 0.43**

AC ¼ abdominal circumference; BPD ¼ biparietal distance; BW ¼ birth

weight; FL ¼ femur length; HC ¼ head circumference; OFD ¼ occipito-

frontal diameter.
** Indicate that the correlation coefficient has statistical significance ( p< 0.01).



Fig. 5. The scatter plot of birth weight (BW) and ultrasonographic parameters. (A) AC ¼ abdominal circumference (cm), r ¼ 0.8; (B) BPD ¼ biparietal diameter

(cm), r ¼ 0.6; (C) FL ¼ femur length (cm), r ¼ 0.5; (D) HC ¼ head circumference (cm), r ¼ 0.5; (E) OFD ¼ occipito-frontal diameter (cm), r ¼ 0.4; BW ¼ birth

weight; n ¼ 2,127.
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formulas. In contrast, the prerequisite of a normal distribution
was not necessary in the ANN model.

In our ANN model in this series, back-propagation algo-
rithm is an adaptive system that changes the weight by an
amount proportional to the difference between the predicted
output and the actual output [12,24]. It is composed of a large
number of highly interconnected processing elements
working in unison to solve nonlinear problems, which is
based on the concept of gradient descent. This concept
minimizes the error function between the EFW and the BW.
The results of the neural network model for fetal weight
estimation are found to be superior to the regression models.
Farmer et al [13] and Chuang et al [14] proposed the back
propagation network with the steepest descent algorithm that
uses an orthogonal search direction to find the minimum
point of the error function. The algorithm tends to coverage
most slowly for small learning rate. If the gradient of the
error function is changing too fast for making the learning
rate large, the algorithm will become unstable. The advan-
tage of using the ANN method is to reduce the heterogeneity
among fetuses and among parameters on the EFW based on
scientific statistical analysis.



Fig. 6. The scatter plot of birth weight and abdominal circumference. Group I:

the low birth-weight group, r ¼ 0.92, n ¼ 102. Group II: the normal birth-

weight group, r ¼ 0.61, n ¼ 1,044. Group III: the high birth-weight group,

r ¼ 0.64, n ¼ 981.

Table 7

Comparison of mean absolute percent error (MAPE) and mean absolute error

(MAE) of estimated fetal weight (EFW) methods (in testing set, n ¼ 638).

Methods MAPE � SD (%) p MAE � SD (g) p

Hsieh’s

formula 1B (1987)

6.0 � 4.6% <0.01 173.2 � 120.3 <0.01

Hsieh’s

formula 2B (1987)

6.5 � 7.2% <0.01 175.1 � 120.4 <0.01

Hadlock’s

formula (1985)

7.4 � 5.3% <0.01 224.6 � 169.0 <0.01

Proposed method 5.3 � 4.1% d 157.9 � 119.9 d

EFW ¼ estimated fetal weight; MAE ¼ mean absolute error; MAPE ¼ mean

absolute percent error; SD ¼ standard deviation.

The estimation error of the proposed method has a significant difference from

three regression methods using the Friedman test and multiple-comparisons

procedure.
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As AC is the most sensitive estimator for fetal size in this
series, AC is selected as the basis of grouping fetuses. As
Sabbagha et al [11] pointed out in their report, it is necessary
to classify fetuses for reducing errors of EFW in small- and
large-for-GA fetuses. For example, there were fetuses with an
average AC measurement, but their BWs exceeded the 90th
percentile. In that situation, the single predicting variable of
AC is incapable and apparently insufficient to define all the
heterogeneities generated from the gathered data. Therefore,
the combination of USPs had been claimed to be better than
the single parameter in the prediction of EFW [6, 25,26].

Concerning the impacts of FP and gender on EFW accu-
racy, previously published formulas [27] showed that EFW in
breech presentation appears to be less accurate than EFW in
vertex presentation. In addition, several studies [28e30] have
reported that gender-specific and weight-range-specific
method of EFW prediction provided greater accuracy.
Furthermore, EFW is more accurate for male than female
fetuses [31]. In our study, we utilized the stepwise estimation
to extract the contribution of each independent parameter to
the ANN. Our results showed that FP was a matter of affecting
EFW prediction in the high BW group. In contrast, fetal
gender was a contributive parameter for fetal weight estima-
tion in the normal BW group and high BW group. Although
the proposed procedures of grouping fetuses and parameters
extraction, AC, BPD, SEX, FL, FP are included with the input
of the ANN in the high BW group.
Table 6

The mean and standard deviation of MAPE and MAE of each group (n ¼ 638).

Groups MAPE � SD (%) MAE � SD (g)

Low BW group (Group I) 7.1 � 6.1% 83.5 � 82.8

Normal BW group (Group II) 5.4 � 4.6% 157.2 � 131.2

High BW group (Group III) 4.9 � 3.2% 166.7 � 107.9

Total 5.3 � 4.1% 157.9 � 119.9

BW ¼ birth weight; MAE ¼ mean absolute error; MAPE ¼ mean absolute

percent error; SD ¼ standard deviation.
Farmer et al focused mainly on the macrosomia group and
used 13 variables as the input of an ANN model [13]. Their
report showed that the MAPE of EFWs of 102 fetuses was
4.7 � 3.9%. In our study, the MAPE of EFWs of 74 fetuses in
the high BW group was 4.9 � 3.2%. The MAPE of EFW
estimation in our study was similar to that in Farmer’s study.
The accuracy of EFW using the proposed approach out-
performed that using the Taiwanese conventional regression
analysis with Hsieh’s formula 1B, or that using Hsieh’s
formula 2B [6], and even that using the American conven-
tional regression analysis [5]. In Chuang’s study, when a BW
was below 2500 g, the MAPE of EFW was raised to 9.6%.
When a BW was above 4000 g, the MAPE of EWF was raised
to 13.0%. In Table 6, the MAPE was 7.1 � 6.1% in Group I
and 4.9 � 3.2% in Group III. The accuracy of our novel
approach in the high BW group (Group III) was significantly
improved in comparison with Chuang’s study [14], while the
accuracy of our novel approach in the low BW group
(Group I) was similar.
Fig. 7. The scatter plot of actual birth weight and estimated fetal weight by the

proposed model in the testing set (n ¼ 638).
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In conclusion, our study is an attempt to develop scientific and
statistical approaches to the selection and verification of parame-
ters, as well as to develop an ANNmodel, to improve the accuracy
of EFW applicable in a wider range of GAs and weights.
The importance of our study is to consider and control the
heterogeneity among the high variability and broad ranged
parameters by statistics, and to choose the best parameter as
a reasonable classified group to improve the accuracy. According
to our results, this study has proved that the accuracy of the
proposed approach outperforms those of the commonly used EFW
formulas based on regression models. Our study attempted to
investigate the significant assessment criteria and eliminate noise
factors between ultrasound parameters and actual BW before
delivery. The risk analysis affecting fetal outcomes, especially on
the 3 days prior to deliverywas investigated for providing valuable
information in the clinical decision-making and management for
parturition. In addition, fetal growth is very crucial to prenatal
diagnosis and genetic consultation [32e37]. We believe our novel
classificationeANN model of EFW estimation may assist clini-
cians to assess fetal growth in daily practice.
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