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Abstract
Objectives: The accuracy of ultrasound (US) measurements is operator dependent. In order to decrease the operator-dependent errors in esti-
mated fetal weight (EFW), a model selection analysis was undertaken to select significant compensation weighting factors on ultrasonographic
parameters to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation.
Materials and Methods: In total, 2127 singletons were examined by prenatal US within 3 days before delivery for ANN development, and
another 100 cases were selected from new operators for evaluation. First, correlation analysis was used to analyze the differences between the
prenatal and postnatal parameters. Second, Akaike information criterion (AIC) was used to determine the number of database partition and
optimal weightings for compensating the input parameters of the ANN model. Finally, minimum mean squared error (MMSE) mode was utilized
to determine the optimal EFW.
Results: EFWof the proposed compensation model using AIC and MMSE showed mean absolute percent error of 5.1 � 3.1% and mean absolute
error of 158.9 � 96.2 g. When comparing the accuracy of EFW, our model using AIC and MMSE was superior to those conventional EFW
formulas (all p < 0.05).
Conclusion: We proved that performing the parameter compensation (by AIC) and model compensations (by MMSE) for the ANN model can
improve EFW accuracy. Our AICeMMSE model of EFW will contribute to the improvement of accuracy when adding new US datasets
measured by new operators.
Copyright � 2013, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.
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Introduction

To assess estimated fetal weight (EFW) accurately in ob-
stetrics is very important for choosing a good delivery
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procedure to best benefit both the mother and the infant. The
accuracy of EFW is affected by multiple variables including
various fetal ultrasound (US) parameters. For clinical practice
in Taiwan, the EFW involves a combination of ultrasono-
graphic measurement of fetal growth parameters, such as
biparietal diameter (BPD), abdominal circumference (AC) and
femur length (FL) with Hsieh’s reported equations which are
the major methods for the estimation of fetal weight. However,
such regression methods are relatively acceptable in clinical
obstetrics [1e5]. The accuracy of EFW remains to be
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improved. Clinical practice has found that the US-based EFW
estimation yielded a 10% error for newborns weighing
2e4 kg; and >15% error was observed for newborn babies
weighing <2 kg or >4 kg [6].

Recently, using artificial neural network (ANN) approaches
to estimate fetal weight has become popular [7e9], and it is
more accurate than the traditional regression methods. Farmer
et al [7], Chuang et al [8], and Cheng et al [9] have reported
that adopting the ANN model could provide more accurate
EFW than before. However, the estimation is becoming more
complex as more fetal parameters can be gathered; the error is
still large for high birthweight (BW) or low BW fetuses; and
clinical accuracy demand is increasing. Thus, the estimation
models need to be further improved for better clinical benefit.
The present study applied the Akaike information criterion
(AIC) and minimum mean squared error (MMSE) mode to
improve significant compensation weightings, and thus mini-
mize the difference between EFW and actual BW.

Materials and methods
Overall experiment
Specifically, the aims of this study were: (1) to provide an
MMSE-based criterion for the model compensation of errors
between prenatal and postnatal parameters; and (2) to apply
the proposed approach on a ANN-based fetal weight estima-
tion model and evaluate the effect of the compensation. Fig. 1
depicts the flowchart of the proposed overall experiment.
Several prenatal US parameters were inputted to the baseline
ANN to derive the EFW. The error Dw was calculated by
subtracting EFW from BW. The differences among prenatal
and postnatal parameters, head circumference (HC), AC, and
FL were evaluated as DHC, DAC, and DFL. The MMSE
compensation model took Dw, DHC, DAC, and DFL into
consideration and made adjustments to the input parameters of
the ANN to see the compensation effect.
Fig. 1. The flowchart of overall experiments. AC ¼ abdominal circumference;

AIC ¼ Akaike information criterion; ANN ¼ artificial neural network;

BPD ¼ biparietal diameter; EFW ¼ estimated fetal weight; FL ¼ femur

length; FP ¼ fetal presentation; GA ¼ gestational age; HC ¼ head circum-

ference; MMSE ¼ minimum mean squared error; OFD ¼ occipitofrontal

diameter; SEX ¼ gender; DHC ¼ difference between the prenatal and post-

natal parameters of HC; DAC ¼ difference between the prenatal and postnatal

parameters of AC; DFL ¼ difference between the prenatal and postnatal pa-

rameters of FL; DW ¼ difference between estimated and actual birth weights.

þ ¼ summation of input data; � ¼ subtraction of input data.
Data collection
Our retrospective study used the data collected from an
educational hospital in Southern Taiwan: National Cheng
Kung University Hospital. The participants included pregnant
women with singleton pregnancies within 72 hours of delivery.
This study was approved by the Institutional Review Board of
National Cheng Kung University Hospital (IRB: ER-99-011).
Informed consent was obtained from the pregnant women
before examination. All the fetuses were examined by US
scanner. The ultrasound measurements were undertaken by
using conventional scanners (Aloka SSD-680, Tokyo, Japan;
Medison Accuvix V20, Seoul, Korea; GE Voluson 730 Expert,
Milwaukee, WI, USA) with 3.5e5.0-MHz convex transducers.

For the baseline ANN model, the collected data were
screened to exclude those with missing data or unreasonable
codes. The data were then used for developing an ANN model
[9] to obtain the baseline threshold. A total of 2127 consec-
utive singleton fetuses were used in this study. The data for the
fetuses were randomly divided into training and testing
groups. The concept of v-fold cross validation and the same
criterion of 7:3 were adopted to separate the training and the
test datasets as in our previous study [8], and perform the
evaluation five times. The model was trained using 1489 cases
(70%) and tested with 638 cases (30%). The back propagation
approach was used to train the network for optimizing the
performance. MATLAB software package was adopted as the
tool to perform the ANN algorithm. For evaluation of the
proposed approach, we randomly chose 100 cases from the
new operators with their examinations for the further
experiment.
Ultrasonographic parameters assessment and
correlation analysis
The fetuses were measured with US and yielded numerical
parameters including: BPD, occipitofrontal diameter (OFD),
AC, HC, and FL. Two nominal parameters, such as gender
(SEX) and fetal presentation (FP) together with gestational
age (GA) were also included in the prenatal data. Fetal AC
was calculated by:

AC¼ p

2
� ðAPDþATDÞ ð1Þ

where APD was abdominal anteroposterior diameter and ATD
was abdominal transverse diameter. Similarly, the parameters
BPD and OFD could be used to calculate the HC parameter as
represented by Eq. (2).

HC¼ p

2
� ðBPDþOFDÞ ð2Þ

GAwas derived based on the date of the last normal menstrual
period and confirmed by the first US scan. GA for all cases
needs both the examination of the last menstrual period and
US confirmation [4,10,11]. FP was divided into vertex and
malpresentation groups according to US examination. Fetuses
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with breech or transverse presentations were represented in the
malpresentation group. After the baby was delivered, the
physiological parameters such as birth length (BL), chest
circumference (CC), and HC could be measured.

The KolmogoroveSmirnov test [12] was first applied to
test whether they were normally distributed. Item analysis
criteria such as internal consistency and correlation analysis
were conducted to reveal the characteristics and discrimination
of the prenatal US parameters and postnatal physical ones. The
correlation and regression analysis among BPD, OFD, and HC
was also performed. The relationship could be formulated as
in Eqs. (3) and (4), where b2 was a weighting factor and ε2 the
error term.

BPD¼ b2 �OFDþ ε2 ð3Þ

OFD¼ ð2HC=pÞ � ε2

1þ b2
ð4Þ
AIC and MMSE framework for compensating for
ultrasonographic parameters
Analysis of the differences between prenatal and postnatal
parameters aimed to achieve an optimal compensation on the
ANN inputs. The feedback mechanism also benefited under-
standing of the error characteristics. Fig. 2 shows the deter-
mination algorithm for selecting the optimal weighting factors.
There were two steps including parameter and model com-
pensations. In the parameter space, the differences DHC, DAC
and DFL between the prenatal and postnatal parameters were
first uniformly partitioned into k subsets. AIC assessed each
subset to determine an optimal number k of subsets. The above
procedure was performed repeatedly until a minimum AIC
value was determined. The selected subsets were then used to
estimate a set of optimal weighting factors for the three dif-
ferences. After the compensation in the parameter space, the
compensated parameters were inputted to the developed ANN
Fig. 2. The determination of the compensation weighting factors.

AIC ¼ Akaike information criterion; ANN ¼ artificial neural network;

FW ¼ fetal weight; MMSE ¼ minimum mean squared error.
model to re-estimate the fetal weights. The difference Dw for
each subset was then conducted into the MMSE-based esti-
mation process to determine a set of the optimal model
compensation weightings.
AIC database partition and subset number
determination
Before the compensation, the errors of the postnatal-to-
prenatal parameter difference were considered to be parti-
tioned into complementary subsets to assert the model fitness.
The number of subsets was determined by using the AIC
[13,14]. The AIC is an analytical model selection method based
on using analytical estimates of the prediction risk for regres-
sion. With a linear estimator it was possible to determine the
effective number of parameters. The number associated with
each model was calculated as in Eq. (5). The AIC value can be
regarded as the decision criterion for the best subsets partition
number.

AIC¼ lnV þ 2d

N
ð5Þ

where V was the number of parameters in the model; d the
complexity of the model; and N the number of observations.
The criterion could be minimized over choices of d to form
a tradeoff between the fit of the model and its complexity.

Based on the limitation of the testing data, we took the bias
correction up to the termof orderN�1 into theAICusingEq. (6):

AICc ¼ AICþ 2mðmþ 1Þ
N�m� 1

ð6Þ

where m was the number of parameters in the model. After
partitioning by AIC, the differences DHC, DAC, and DFL
were then divided into d subsets for further experiments. Their
values also needed to be normalized before the AIC deter-
mination. For a sequence of error data Dxi, the normalized Dxi

*

could be calculated using Eq. (7):

Dx�i ¼
Dx�i �Dxmin

Dxmax �Dxmin

ð7Þ

where Dxmax was the maximum error and Dxmin the minimum
error.

The relationship between Dw and {DHC, DAC, DFL} was
then estimated by the formula in Eq. (8).

Dw¼ a,DHCþ b,DACþ g,DFLþ ε ð8Þ

where a, b, g were weighting coefficients and ε the error
term. Deriving these coefficients by statistical regression, we
had the compensated HC0, AC0 and FL0 for the input of the
original ANN model. The compensations were given by:

8<
:

HC¼ HCþ a,DHC
AC¼ ACþ b,DAC
FL¼ FLþ g,DFL

ð9Þ



Fig. 3. Baseline artificial neural network estimation model. AC ¼ abdominal

circumference; BPD ¼ biparietal diameter; FL ¼ femur length; FP ¼ fetal

presentation; GA ¼ gestational age; HC ¼ head circumference;

OFD ¼ occipitofrontal diameter; SEX ¼ gender.
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MMSE compensation
According to the compensated parameters HC0, AC0 and
FL0 of the selected subsets, the re-estimation of the fetal
weight was performed as EFW0. Among all the partitioned
training data, we applied the MMSE [15] criterion to deter-
mine the optimal estimate of EFW0 based on the collected
data. The MMSE was formulated as in Eq. (10).

MMSE¼ argmin
k

Pk
i¼1ðEFW0

i �BWiÞ2
k

ð10Þ

where k was the number of subsets in different partitions.
After the MMSE processing, the overall optimal compensation
weighting for Eq. (8) was determined by choosing the minimal
MMSE among the various AIC subsets. The weighing was
used to generate adjusted fetal parameters and applied to the
ANN inputs for estimation of BW. Accuracy comparison be-
tween the baseline and the compensated EFW was conducted
to validate and assess the proposed approach.
Accuracy comparison and performance evaluation
The baseline model for estimating fetal weight was based
on the back-propagation ANN architecture proposed by
Table 1

Four conventional formulas of estimating fetal weight.

References Formulas

Hsieh’s formula 1B (1987) log10EFW ¼ 5:6541� 10�3 � A

�10�2 � BPDþ 2:1315

Hsieh’s formula 2B (1987) log10EFW ¼ 9:4962� 10�3 � A

�BPD2 � FLþ 2:7193

Hadlock’s formula (1985) log10EFW ¼ 1:304þ 0:05281�
Shepard’s formula (1982) log10EFW ¼ 1:2508þ 0:166� B

AC ¼ abdominal circumference; BPD ¼ biparietal distance; BW ¼ birth weight;
Cheng et al [9]. The model was composed of an input layer
with eight inputs, a hidden layer, and an output layer. The
input of the ANN was grouped according to fetal AC value.
Three groups, low, normal, and high BW, were determined
using k-means clustering algorithm [16,17]. Eight significant
features including BPD, OFD, HC, AC, GA, FL, SEX, and
FP were selected by stepwise regression [18,19] as input
parameters in the group-based ANN model. Fig. 3 depicts
the training and testing flowchart for the ANN-based fetal
weight estimation.

The error of fetal weights estimated by the proposed
model was compared with regression-based formulas listed in
Table 1, including Hsieh’s formula 1B [4], Hsieh’s formula 2B
[4], Hadlock’s formula [3], and Shepard’s formula [1]. Two
indexes were adopted for assessing the accuracy: mean abso-
lute error (MAE) and mean absolute percent error (MAPE).
The equations are represented as follows:

MAE¼ 1

n

Xn

i¼1

jEFWi �BWij ð11Þ

MAPE¼ 1

n

Xn

i¼1

jEFWi �BWij
BWi

� 100% ð12Þ

where n was the number of fetuses. The significant level was
defined as 0.05. Data management and statistical analysis
were performed using SPSS for Windows version 15.0 (SPSS
Inc., Chicago, IL, USA) and STATISTICA version 8 (Stat-
Soft Inc., Tulsa, OK, USA). As described above, our study
used 100 cases as the input of the trained ANN model. Based
on the proposed error-compensation model, the fetal pa-
rameters were adjusted and re-fed to the ANN. The results of
weight estimation with/without the compensation were
compared to assess the accuracy of the proposed compen-
sation model, and the accuracy evaluation was compared
between the proposed compensation model and commonly
used EFW formulas.

Results
Data description
The range of BWs of 2127 babies was between 500 g and
4736 g and was used for the ANN model development [9]. GAs
ranged from 21 to 43 weeks. All the US parameters were tested
using the KolmogoroveSmirnov test ( p< 0.05) and the results
C� BPD� 1:5515� 10�4 � AC2 � BPDþ 1:9782� 10�5 � AC3 þ 5:2594

C� BPD� 0:1432� FL� 7:6742� 10�4 � AC� BPD2 þ 1:7450� 10�3

ACþ 0:1938� FL� 0:004� AC� FL

PDþ 0:046� AC� 0:002646� AC� BPD

EFW ¼ estimated fetal weight; FL ¼ femur length.



Table 2

Statistics of prenatal and postnatal ultrasound parameters of the selected 100

cases.

Types Prenatal Postnatal

Parameters HC

(cm)

AC

(cm)

FL

(cm)

BW

(g)

HC

(cm)

CC

(cm)

BL

(cm)

Mean 32.4 32.9 7.0 3122.5 33.3 32.3 49.1

SD 1.2 1.4 0.2 285.2 1.3 1.4 1.5

AC ¼ abdominal circumference; BW ¼ birth weight; BL ¼ birth length;

CC ¼ chest circumference; FL ¼ femur length; HC ¼ head circumference;

SD ¼ standard deviation.
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revealed that all numeric data had non-normal distributions.
The numerical parameters with the significant discrimination
included AC, BPD, OFD, HC, FL, and GA. AC had a strong
positive correlative with BW (r ¼ 0.81, p < 0.01) and was
selected as the basis of grouping fetuses, including the low BW
group (Group I, r¼ 0.92, p< 0.01, n¼ 102), normal BW group
(Group II, r ¼ 0.61, p < 0.01, n ¼ 1,044), and high BW group
(Group III, r ¼ 0.64, p < 0.01, n ¼ 981). In Group I, the input
layer included three parameters of GA, BPD, and AC
(R2 ¼ 0.95, n ¼ 102). In Group II, the input layer included six
parameters of AC, BPD, GA, FL, SEX, and HC (R2 ¼ 0.72,
n ¼ 1044). In Group III, the input layer included five param-
eters of AC, BPD, SEX, FL, and FP (R2 ¼ 0.61, n ¼ 981).

For evaluating our approach, 100 cases were conducted for
the outside testing with BW >2 kg. The mean and standard
deviation for prenatal parameters were: HC, 32.4 � 1.2 cm;
AC, 32.9 � 1.4 cm; and FL, 7.0 � 0.2 cm; and for postnatal
parameters: BW, 3122.5 � 285.2 g; HC, 33.3 � 1.3 cm; CC,
32.3 � 1.4 cm; and BL, 49.1 � 1.5 cm (Table 2). The
Spearman correlation between prenatal and postnatal param-
eters had a positive coefficient: FL and BL was r ¼ 0.44
( p < 0.05), AC and CC was r ¼ 0.51 ( p < 0.05), and prenatal
HC and postnatal HC was r ¼ 0.51 ( p < 0.05).
Evaluation of parameter compensation by AIC and
MMSE
We compared the AIC values for 3e10 subsets partition.
Fig. 4 shows the AIC with different subset number of DHC,
Fig. 4. The AICs with different number of subsets for DHC, DAC, and DFL.

AC ¼ abdominal circumference; AIC ¼ Akaike information criterion;

FL ¼ fetal length; HC ¼ head circumference; DHC ¼ difference between the

prenatal and postnatal parameters of HC; DAC ¼ difference between the

prenatal and postnatal parameters of AC; DFL ¼ difference between the

prenatal and postnatal parameters of FL.
DAC, and DFL. The minimum AIC value for DHC was �2.52,
DAC was �3.03, and DFL was �3.22. The minima all
occurred when the number of subsets was set to 3. Thus,
partitioning the testing dataset into three subsets yielded the
minimum AIC. Accordingly, the weighting coefficients for a,
b, and g were then derived using Eq. (8). Table 3 shows the
weighting values for the selected subsets.

These weightings were further used to derive the compen-
sated values HC0, AC0, and FL0. Taking the first subset as
an example, the AIC compensation was calculated by using
Eq. (13):

8<
:

HC¼ HCþ 0:24,DHC
AC¼ ACþ 0:35,DAC
FL¼ FLþ 0:41,DFL

ð13Þ

The BPD and OFD correlation was also derived as shown
in Eq. (14):

BPDi ¼ 0:318�OFDi þ 5:657 ð14Þ

Subset 3 with MMSE was chosen to determine the optimal
weightings for further model-based compensation. The com-
pensated parameters AC0, FL0, BPD0, and OFD0 were inputted
into the ANN model.
Accuracy comparison of fetal weight estimation
The evaluation results of MAPE and MAE based on the
baseline model without the compensation were 5.4� 3.2% and
165.6 � 97.5 g, respectively; the results using the proposed
compensation model were 5.1 � 3.1% and 158.9 � 96.2 g,
respectively. Experimental results showed improvement of the
EFWaccuracy. The accuracy evaluation was compared between
the proposed compensation model and regression-based for-
mulas. As shown in Table 4, the MAPE and MAE of the pro-
posed compensation method were 5.1 � 3.1% and
158.9� 96.2 g, 6.3� 3.4% and 195.3� 102.2 g for theHsieh 1B
model, 6.3� 3.4% and 195.1� 102.9 g for the Hsieh 2Bmodel,
6.8 � 5.4% and 214.2 � 174.7 g for the Hadlock model,
6.4 � 3.5% and 198.3 � 101.9 g for the Shepard model, and
5.4 � 3.2% and 165.6 � 97.5 g for the baseline without com-
pensation Cheng’s ANNmodel, respectively. The Friedman test
showed thatMAPE andMAE had significant differences among
the six methods (Table 4). The results of the multiple-
comparisons procedure showed that the MAPE and MAE of
five pairs had significant differences. The five pairs were com-
pared as below: (1) the proposed method and the Hsieh’s for-
mula 1B method; (2) the proposed method and the Hsieh’s
formula 2B method; (3) the proposed method and Hadlock’s
Table 3

Weightings for the selected three subsets by Akaike information criterion.

Subsets a b g

Subset 1 0.24 0.35 0.41

Subset 2 0.44 0.12 0.44

Subset 3 0.83 0.14 0.03

a, b, g are weighting coefficients.



Table 4

Comparison of the accuracy of estimating fetal weight among AICeMMSE

model and conventional formulas (n ¼ 100).

Methods MAPE �
SD (%)

p valuea MAE �
SD (g)

p valuea

Hsieh’s formula 1B (1987) 6.3 � 3.4% <0.01 195.3 � 102.2 <0.01

Hsieh’s formula 2B (1987) 6.3 � 3.4% <0.01 195.1 � 102.9 <0.01

Hadlock’s formula (1985) 6.8 � 5.4% <0.01 214.2 � 174.7 <0.01

Shepard formula (1982) 6.4 � 3.5% <0.01 198.3 � 101.9 <0.01

Cheng’s ANN model

(2012)

5.4 � 3.2% <0.01 165.6 � 97.5 <0.01

AICeMMSE model

(This series)

5.1 � 3.1% d 158.9 � 96.2 d

AIC ¼ Akaike information criterion; ANN ¼ artificial neural network;

EFW ¼ estimated fetal weight; MAE ¼ mean absolute error; MAPE ¼ mean

absolute percent error; MMSE ¼ minimum mean square error; SD ¼ standard

deviation.
a The estimation errors (MAPE and MAE) of the AICeMMSE model were

smaller than those of the conventional formulas and our previous ANN model

using the Friedman test and multiple-comparisons procedure.
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method; (4) the proposedmethod and Shepard’smethod; and (5)
the proposed method and the Cheng’s without compensation
ANN model. Our proposed approach was significantly better
than four regression methods and Cheng’s without compensa-
tion ANN model by Friedman test.

Discussion

We showed an efficient AICeMMSE compensation
framework based on our proposed ANN model for improving
EFW accuracy with another 100 cases selected from new
operators. The baseline ANN model adopted an AC grouping
approach to reclassify the input parameters of the ANN model
and showed its ability to estimate fetal weight more accurately
than the classical regression models [9]. However, the ANN
model is highly dependent on the training cases. In order to be
applicable to unseen or incomplete data, the model needs to be
recalculated, which may not be possible in practice.

Motivated by the central limit theorem in statistics, the
distribution of an average tends to be normal, even when the
distribution from which it is averaged is non-normal. Although
the error compensation model was trained with a small number
of 100 cases, the cases were reasonably partitioned into several
subsets and then conducted with a cross-validation process into
the selection of the optimal weighting factors and further the
minimization of the estimation errors to be averaged. Then the
compensated parameters, HC’, AC’ and FL’, and their optimal
weighting coefficients for the differences, DHC, DAC and DFL
were estimated and used for the further ANN development.
Experiments for optimal partition using AIC could achieve
a satisfactory performance with regard to the complexity, the
limited data size, and the number of subsets. The range of three
to seven subsets was evaluated to find the minimal AIC, and
the results suggested that three subsets showed a tradeoff
outcome in selecting the optimal partition.

The present study, based on error between the prenatal and
postnatal fetal parameters, utilized an AICeMMSE approach to
compensate the input parameters of Cheng’s ANN estimation
model, to reduce further the estimation error of fetal weight.
Through the correlation analysis, the prenatal FL was sig-
nificantly correlated with postnatal BL (r¼ 0.44, p< 0.05), and
AC andCC (r¼ 0.51, p< 0.05). TheBPD andOFD,which could
be derived from HC, showed their correlation (r ¼ 0.51,
p< 0.05). This approach could also provide useful formulation in
dealing with the problem of data incompleteness. Although the
optimal number of subsets was determined, the corresponding
compensation weighting coefficients were obtained and con-
ducted into the MMSE processing for the advanced model
compensation. The weighting coefficients with minimum esti-
mate of errors became an alternative way to compensate the in-
puts of the baseline ANN model without recalculation.

In conclusion, our study attempted to eliminate noise fac-
tors between ultrasonographic parameters and actual BW
before delivery by using a new model of AICeMMSE.
Although the baseline ANN model could achieve a significant
difference from other methods, the data heterogeneity among
the high variability and broad-ranged parameters needs to be
minimized. According to our results, the proposed novel
approach using AICeMMSE shows potential improved ac-
curacy in comparison with our previous study. Although it
could be argued that the performance depends on the limited
data set, a further thought is that more training data and real
observations (infants) are needed to improve the evaluation
performance. As shown by the effects in the evaluation of the
parameter and model compensation, determination of number
of subsets and normalization of parameters play important
roles in this task. The kind of development is highly empirical
and needs to collect data from many individuals. In addition,
the assessment of fetal weight as well as fetal growth is still
crucial to prenatal diagnosis and genetic consultation [20e27].
We believe our novel ANN model and the improved work in
this task could provide valuable information in assisting the
related assessments in daily practice.
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