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Objective: Mucinous ovarian carcinoma (MOC) is an uncommon subtype of epithelial ovarian cancers,
and the pathogenesis is still poorly understood because of its rarity. We conducted a gene set-based
analysis to investigate the pathogenesis of MOC by integrating microarray gene expression datasets
based on the regularity of functions defined by gene ontology or canonical pathway databases.
Materials and methods: Forty-five pairs of MOC and normal ovarian tissue sample gene expression
profiles were downloaded from the National Center for Biotechnology Information Gene Expression
Omnibus database. The gene expression profiles were converted to the gene set regularity indexes by
measuring the change of gene expression ordering in a gene set. Then the pathogenesis of MOC was
investigated with the differences of function regularity with the gene set regularity indexes between the
MOC and normal control samples.
Results: The informativeness of the gene set regularity indexes was sufficient for machine learning to
accurately recognize and classify the functional regulation patterns with an accuracy of 99.44%. The
statistical analysis revealed that the GTPase regulators and receptor tyrosine kinase erbB-2 (ERBB2) were
the most important aberrations; the exploratory factor analysis revealed phosphoinositide 3-kinase-
activating kinase, G-protein coupled receptor pathway, oxidoreductase activity, immune response,
peptidase activity, regulation of translation, and transport and channel activity were also involved in the
pathogenesis of MOC.
Conclusion: Investigating the pathogenesis of MOC with the functionome provided a comprehensive
view of the deregulated functions of this disease. In addition to GTPase regulators and ERBB2, a plenty of
deregulated functions such as phosphoinositide 3-kinase, G-protein coupled receptor pathway, and
immune response also participated in the interaction network of MOC pathogenesis.
© 2017 Taiwan Association of Obstetrics & Gynecology. Publishing services by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Primary mucinous ovarian carcinoma (MOC) is an uncommon
subtype of epithelial ovarian cancers, accounting for 3e4% of all
ovarian carcinomas [1,2]. Currently, the carcinogenesis of MOC is
still poorly understood because of its rarity. Two genetic aberra-
tions, KRAS and receptor tyrosine kinase erbB-2 (ERBB2), are
known to be involved in the pathogenesis of MOC [3]; besides,
knowledge about the function regulation and pathogenesis of this
cancer is limited. Microarray gene expression [4e6] is the primary
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tool of investigation of the pathogenesis of complex diseases such
as mucinous ovarian cancer. To further understand the pathogen-
esis of MOC, we conducted an integrative analysis of mucinous
ovarian cancer with the microarray gene expression datasets
downloaded from publicly available databases.

The workflow of this gene set-based analysis was introduced
before [7e10]. In brief, it consisted of two steps. First, microarray
gene expressions were converted to a gene set regularity (GSR)
index by computing the expression ordering change among genes
in a given gene set defined by the gene ontology (GO) or the ca-
nonical pathway database downloaded from the Molecular Signa-
ture Database [11]. Each gene set contains a group of genes,
defining biological process, molecular function, or cellular
component; for simplification, we called them “function” in this
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study. By measuring the change of gene expression level orderings
between cancerous and normal states, regularity of the function
defined by that gene set could be quantified. In the second step, the
pathogenesis of MOC was investigated with the 1454 GO term- or
1330 canonical pathway-defined functions. We utilized exploratory
factor analysis (EFA) to discover important deregulated functions
and the interaction network involved in the pathogenesis of MOC.

Materials and methods

Microarray datasets, gene set definition, and data processing

We downloaded gene expression microarray datasets in the
SOFT format from the National Center for Biotechnology Informa-
tion Gene Expression Omnibus database. MOC and normal ovarian
tissue were used for comparison. The common genes among all the
datasets and the associated gene expression data were included.
Datasets and gene setswere discarded if the number of the common
genes and gene elements was less than 8000 and 3, respectively.

Computing GSR indexes

Figure 1 shows the workflow for computing the GSR indexes,
which was modified from the Differential Rank Conservation [12].
Figure 1. Workflow of the GSR model. The MOC or control GSR index was computed by conv
each GO term or canonical pathway gene set. Machine learning algorithm was trained to
(caseecontrol) classifications. Functionome analysis was carried out to investigate the path
ovarian carcinoma.
The Differential Rank Conservation is designed to measure the
perturbation of a given gene set by quantifying the change of gene
expression orderings of gene elements in that gene set. Instead of
measuring the perturbation, the GSR index quantifies the change of
gene expression orderings between two phenotypes in a gene set.
For this purpose, the GSR indexes of the MOC and normal ovarian
tissue groups were computed by comparing the sample's gene
expression orderings with the baseline gene set ordering template,
defined as themost common gene expression ordering in a gene set
among all the normal ovarian tissue samples. Subsequent analyses
of MOC and normal ovarian tissue GSR indexes were carried out
based on this baseline. The baseline gene set ordering template for
each gene set was established by pairwise comparison between the
expression levels of two genes for all possible combinations of gene
pair. Establishment of the baseline gene set expression ordering
template and computation of the GSR indexes were executed in R
environment. The code and test datasets can be obtained from the
GitHub (https://github.com/carlzang/GSR-model.git).
Statistical analysis

We used ManneWhitney U test to test the differences between
the MOC and control GSR indexes, and the data were corrected by
erting the gene expression orderings of MOC or normal ovarian control sample through
recognize the patterns consisting of the GSR indexes and then execute the binary
ogenesis of MOC. GO ¼ gene ontology; GSR ¼ gene set regularity; MOC ¼ mucinous

https://github.com/carlzang/GSR-model.git


Figure 2. Distribution of the GSR indexes for the MOC (orange) and control groups
(blue). The MOC group had smaller GSR index levels in comparison with the normal
control group. A group of GSR indexes with smaller GSR index levels on the left side of
the histogram was observed, indicating a population of deregulated functions in the
pathogenesis of MOC. ca ¼ carcinoma; GO ¼ gene ontology; GSR ¼ gene set regularity;
MOC ¼ mucinous ovarian carcinoma. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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multiple hypotheses using the false discovery rate (Benjami-
nieHochberg procedure). The significancewas defined for p< 0.001.

Classification and prediction of datasets by machine learning

Matrices of the GSR index computed through the GO term and
canonical pathway gene sets were classified and predicted by ma-
chine learning support vectormachines (SVMs) with “kernlab” [13],
which is an R package for kernel-based machine learning methods
and is used to classify patterns of the GSR indexes with the setting
of kernel ¼ “vanilladot” (linear kernel function). The performance
of classification and prediction by SVMs was measured by five-fold
cross validation with the cumulative results of 10 consecutive
classifications. The performance was assessed with the sensitivity,
specificity, as well as accuracy and area under the curve. The area
under the curve was computed by an R package “pROC” [14].

EFA for deregulated GO terms and establishment of the GO tree

The deregulated GO terms of p < 0.001 were selected for EFA.
EFA was executed with the R package “psych” (version 1.5.8). The
number of factors to be extracted was determined by the function
“pa.parellel.” The factoring method used in this study was set to
“pa” and the correlation matrix rotation method was “promax.”

The tree of the deregulated GO terms was constructed by the
“RamiGO” [15], an R package providing functions to interact with
the AmiGO 2 web server and retrieving GO trees.

Construction of interaction network

The network was established with the mutual information
based on entropy estimates from k-nearest neighbor distances and
Algorithm for the Reconstruction of Accurate Cellular Networks for
the reconstruction of interaction networks (multiplicative model)
using the R package “parmigene” (version 1.0.2). The network was
output in .gml format and displayed on Cytoscape (version 3.3.0).

Results

Sample information and means of the GSR indexes of MOC

DNA microarray gene expression datasets were downloaded
from the National Center for Biotechnology Information Gene
Expression Omnibus database, including 45 MOC and 45 normal
ovarian tissue control samples. The microarray gene expression
dataset series of MOC utilized in this study were GSE20565,
GSE26193, GSE30161, GSE44104, GSE51088, GSE55512, and
GSE6008, containing three microarray platforms including GPL570,
GPL7264, and GPL96. The GSR indexes ranged from 0 to 1; 0 rep-
resented the most chaotic function regularity, while 1 represented
the gene expression level orderings in the MOC group that were
completely identical to the most common gene expression level
Table 1
Means and SDs of the MOC and control groups, and performance of the binary (MOC vs. c
through the GO terms, canonical pathways, or combination of both (GO terms þ canonic

Gene set database MOC
Mean (SD)

Control
Mean (SD)

GO terms 0.7252 (0.1481) 0.7633 (0.1353)
Canonical pathways 0.7327 (0.1482) 0.7671 (0.1354)
GO terms þ canonical pathways 0.7288 (0.1482) 0.7651 (0.1354)

Sensitivities, specificities, accuracies, SDs, and AUC were assessed by five-fold cross valida
classifications and predictions.
AUC ¼ area under the curve; GO ¼ gene ontology; MOC ¼ mucinous ovarian carcinoma
orderings in the normal control population. Table 1 shows the
means of the GSR indexes computed through GO terms. The MOC
group had smaller GSR levels than the normal control group, and
the difference was statistically significant at p < 0.0001. Distribu-
tion of the GSR indexes for the MOC and control groups was dis-
played on the histogram. As Figure 2 shows, a group of GSR indexes
with worse GSR was observed on the left side with the peak at 0.5.
It indicated that a population of deregulated GO term-defined
functions existed in the MOC group.
Functional regulation patterns classified and predicted by machine
learning

Machine learning can learn from data by building a model and
recognizing patterns to make prediction or decisions. We trained
SVM [16], a high-performance machine learning algorithm to
classify and predict between the MOC and the normal control
datasets with their functional regulation patterns consisting of the
GSR index matrices. As Table 1 shows, accuracies of binary classi-
fication (MOC vs. control) were 98.33%, 99.44%, and 98.89% when
computing, respectively, through the GO term, canonical pathway
gene sets, and a combination of both. This result revealed that the
informativeness of the GSR indexes was sufficient for SVMs to
undergo accurate classification and prediction.
ontrol group) classification and prediction by SVMs with the GSR indexes computed
al pathways).

Sensitivity (SD) Specificity (SD) Accuracy (SD) AUC

0.9889 (0.0351) 0.9766 (0.0507) 0.9833 (0.02683) 0.9840
0.9889 (0.0351) 1.0000 (0.0000) 0.9944 (0.0175) 0.9945
0.9916 (0.0263) 0.9875 (0.0395) 0.9889 (0.0234) 0.9890

tion. Each measurement was computed by the cumulative results of 10 consecutive

; SD ¼ standard deviation; SVM ¼ support vector machine.
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Most deregulated functions of MOC

Table 2 displays the top 50 most deregulated GO terms ranked
by the p values. The first deregulated GO term was “aldo keto
reductase activity” (GO:0004033), followed by “vitamin transport”
(GO:0051180) and “Rho guanyl nucleotide exchange factor activ-
ity” (GO:0005089). “Aldo keto reductase activity” is a child GO
term of “oxidoreductase activity”; besides, the “oxidoreductase
activity GO 0016616” (39th) and “oxidoreductase activity acting on
CH OH group of donors” (41th) in Table 2 were also GO terms
related to oxidative stress. In addition to “vitamin transport,”
there were many deregulated functions related to transport,
including the “cofactor transport” (14th), “ion transport” (36th) and
“dietri-valent inorganic cation transport” (49th) in Table 2. “Rho
guanyl nucleotide exchange factor activity,” “guanyl nucleotide
exchange factor activity” (35th), and “Ras guanyl nucleotide ex-
change factor activity” (48th) are the GTPase regulator responses
Table 2
Top 50 most deregulated GO terms for mucinous ovarian cancers rank

Deregulated GO terms

1 Aldo keto reductase activity
2 Vitamin transport
3 Rho guanyl nucleotide exchange facto
4 Small conjugating protein binding
5 Ubiquitin binding
6 Calcium channel activity
7 Negative regulation of immune system
8 Carbohydrate biosynthetic process
9 Inositol or phosphatidylinositol phosp
10 Neuropeptide binding
11 Neuropeptide receptor activity
12 Transmembrane receptor protein tyro
13 Innate immune response
14 Cofactor transporter activity
15 Sulfotransferase activity
16 Ligand-gated channel activity
17 Neuropeptide signaling pathway
18 Sarcomere
19 Chloride channel activity
20 Oxygen and reactive oxygen species m
21 Ion channel activity
22 Protein tyrosine kinase activity
23 Substrate-specific channel activity
24 Chaperone binding
25 Acetylcholine binding
26 Synaptic transmission
27 Negative regulation of cytoskeleton or
28 Steroid binding
29 Anion channel activity
30 Humoral immune response
31 Organic anion transmembrane transpo
32 Regulation of immune effector process
33 Sterol binding
34 Cation channel activity
35 Guanyl nucleotide exchange factor act
36 Ion transport
37 Myofibril
38 Transmission of nerve impulse
39 Oxidoreductase activity GO 0016616
40 Neurotransmitter binding
41 Oxidoreductase activity acting on CH O
42 Aromatic compound metabolic proces
43 Regulation of viral reproduction
44 Actin filament-based movement
45 Transferase activity transferring sulfur
46 Intercalated disc
47 Developmental maturation
48 RAS guanyl nucleotide exchange facto
49 Dietri-valent inorganic cation transpo
50 Calcium ion transport

GO ¼ gene ontology.
to RAS activation and signaling. The deregulated GO terms in the
table could be summarized to the following categories: guanyl
nucleotide exchange factor activity, binding, transport, channel
activity, oxidoreductase activity, metabolism, immune response,
phosphoinositide 3-kinase (PI3K) signaling, and protein tyrosine
kinase activity.

Table 3 displays the top 50 deregulated canonical pathways
ranked by the p values. The first deregulated canonical pathway
was “Reactome organic cation anion zwitterion transport,” fol-
lowed by “Reactome downregulation of ERBB2 ErbB3 signaling”.
The third deregulated pathway “Reactome olfactory signaling
pathway”was probably a false positivity because it containedmany
gene set elements related to G-protein, an important deregulated
function appeared in MOC detected by the GSR model. The sixth
deregulated pathway “Reactome PI3K events in ERBB2 signaling”
indicated the possible interaction between the ErbB and PI3K
played in the pathogenesis of MOC.
ed by p values.

p

7.84Ee15
5.58Ee14

r activity 4.79Ee12
5.44Ee12
5.44Ee12
5.49Ee12

process 8.57Ee12
1.45Ee11

hatase activity 1.94Ee11
2.99Ee11
2.99Ee11

sine kinase activity 2.99Ee11
3.15Ee11
4.11Ee11
4.34Ee11
4.41Ee11
4.41Ee11
1.35Ee10
1.35Ee10

etabolic process 1.40Ee10
1.53Ee10
1.65Ee10
2.19Ee10
2.67Ee10
3.34Ee10
3.34Ee10

ganization and biogenesis 3.42Ee10
3.64Ee10
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6.17Ee10

rter activity 6.49Ee10
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7.40Ee10
8.94Ee10
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8.94Ee10
9.24Ee10
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1.01Ee09
1.13Ee09
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s 1.52Ee09

1.55Ee09
1.62Ee09

-containing groups 2.05Ee09
2.08Ee09
2.79Ee09

r activity 2.79Ee09
rt 2.90Ee09

3.07Ee09



Table 3
Top 50 deregulated canonical pathways for MOC ranked by p values.

Deregulated canonical pathways p

1 Reactome organic cation anion zwitterion transport 1.34Ee15
2 Reactome downregulation of ERBB2 ERBB3 signaling 2.25Ee15
3 Reactome olfactory signaling pathway 2.62Ee12
4 PID integrin 5 pathway 3.47Ee12
5 Reactome digestion of dietary carbohydrate 1.21Ee11
6 Reactome PI3K events in ERBB2 signaling 2.93Ee11
7 BioCarta MTA3 pathway 2.96Ee11
8 Reactome regulation of insulin-like growth factor (IGF) activity by insulin-like growth factor-binding proteins (IGFBPs) 4.49Ee11
9 Reactome regulated proteolysis of p75NTR 6.46Ee11
10 KEGG glycosphingolipid biosynthesis ganglio series 6.67Ee11
11 Reactome activated AMPK stimulates fatty acid oxidation in muscle 1.68Ee10
12 Reactome Nef-mediated downregulation of MHC class I complex cell surface expression 3.13Ee10
13 Reactome peptide ligand-binding receptors 3.20Ee10
14 Reactome class A1 rhodopsin-like receptors 5.92Ee10
15 Reactome intrinsic pathway 5.92Ee10
16 KEGG butanoate metabolism 7.85Ee10
17 BioCarta RAC1 pathway 8.02Ee10
18 KEGG olfactory transduction 9.56Ee10
19 Reactome CD28-dependent PI3K Akt signaling 9.56Ee10
20 Reactome endogenous sterols 9.56Ee10
21 KEGG phosphatidylinositol signaling system 1.22Ee09
22 KEGG glycerolipid metabolism 1.28Ee09
23 KEGG inositol phosphate metabolism 1.28Ee09
24 Reactome formation of fibrin clot clotting cascade 1.28Ee09
25 Reactome interaction between L1 and ankyrins 1.28Ee09
26 Reactome norepinephrine neurotransmitter release cycle 1.28Ee09
27 KEGG neuroactive ligand receptor interaction 1.54Ee09
28 KEGG steroid hormone biosynthesis 2.06Ee09
29 Reactome apoptotic cleavage of cell adhesion proteins 2.13Ee09
30 Reactome post-chaperonin tubulin folding pathway 2.13Ee09
31 Reactome signaling by RoBo receptor 2.34Ee09
32 Reactome PI3K cascade 2.77Ee09
33 KEGG fructose and mannose metabolism 2.94Ee09
34 KEGG glyoxylate and dicarboxylate metabolism 2.98Ee09
35 Reactome GABA synthesis release reuptake and degradation 2.98Ee09
36 Reactome muscle contraction 2.98Ee09
37 Reactome striated muscle contraction 2.98Ee09
38 KEGG tryptophan metabolism 3.52Ee09
39 Reactome negative regulation of the PI3K Akt network 4.21Ee09
40 Reactome regulation of gene expression in beta cells 4.53Ee09
41 BioCarta lectin pathway 4.69Ee09
42 Reactome GPCR ligand binding 4.69Ee09
43 Reactome activated NOTCH1 transmits signal to the nucleus 5.38Ee09
44 Reactome cytochrome P450 arranged by substrate type 5.38Ee09
45 Reactome unblocking of NMDA receptor glutamate binding and activation 5.84Ee09
46 KEGG fatty acid metabolism 6.29Ee09
47 Reactome signaling by ERBB4 8.48Ee09
48 Reactome energy-dependent regulation of mTOR by LKB1 AMPK 8.85Ee09
49 KEGG ascorbate and aldarate metabolism 1.24Ee08
50 Naba ECM regulators 1.26Ee08

GPCR ¼ G-protein coupled receptor pathway; MOC ¼ mucinous ovarian carcinoma; PI3K ¼ phosphoinositide 3-kinase; PID ¼ Pathway Interaction Database;
MTA3 ¼ metastasis associated 1 family member 3; p75NTR ¼ p75 neurotrophin receptor; KEGG ¼ Kyoto Encyclopedia of Genes and Genomes; AMPK ¼ 5' adenosine
monophosphate-activated protein kinase; RAC1 ¼ Ras-related C3 botulinum toxin substrate 1; MHC ¼ major histocompatibility complex; NOTCH1 ¼ notch homolog 1,
translocation-associated; NMDA ¼ N-methyl-D-aspartate; mTOR ¼ mechanistic target of rapamycin; LKB1, liver kinase B1; ECM, extracellular matrix.
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EFA, establishment of deregulated GO tree, and interactive network
of deregulated functions of MOC

Numerous significantly deregulated GO terms were involved in
the pathogenesis, as Table 2 shows. EFA can discover the elements
of underlying interactive network among a large number of vari-
ables, so we utilized it to disclose the networks involved in the
pathogenesis of MOC. The EFA detected three groups of deregulated
functions, containing 342 gene set elements in total. To reduce the
redundancy and summarize these elements, these GO terms were
merged and mapped to the GO trees according to their GO hierar-
chy. Figure 3 shows the screenshot of the full deregulated GO tree of
MOC and important deregulated GO terms. The deregulated GO
terms in the table could be summarized to the following categories:
response to stress, system development, cytoskeleton organization,
chromosome organization, G-protein coupled receptor pathway,
immune response, cytokine receptor activity, regulation of cell
cycle, cellecell signaling, protein binding, DNA binding, negative
regulation of cytokine biosynthesis process, negative regulation of
translation, GTPase regulator activity, oxidoreductase activity,
peptidase activity, protein kinase activity, and transmembrane
transporter activity. The interaction network of deregulated func-
tions reconstructed based on themutual information is displayed in
Figure 4. As a complex disease, MOC exhibited numerous deregu-
lated functions; they affected each other and formed the patho-
genesis network of MOC.

Discussion

This study investigated the pathogenesis of MOC with the
quantified functions represented by the GSR indexes. Our results
demonstrated that the GSR indexes might provide sufficient



Figure 3. Screenshot of the full MOC GO tree (middle). The important elements (green boxes) in the cluster of deregulated GO terms were magnified to view the details and labeled
by their common parental GO terms (orange rectangles). GO ¼ gene ontology; GSR ¼ gene set regularity; MOC ¼ mucinous ovarian carcinoma. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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information for accurate pattern recognition by machine learning.
This gene set-based analysis revealed plenty of deregulated func-
tions as well as their interactions involved in the pathogenesis of
MOC.
Figure 4. Interactive network reconstructed by the GO term elements from EFA. Only the no
GO ¼ gene ontology.
KRAS and ERBB2 were well-known genetic aberrations partici-
pating in the carcinogenesis of MOC [3]. KRAS is a GTPase that can
turn on downstream effectors such as PI3K by binding to GTP
activated by GTPase-activating proteins, or be turned off by
des with degrees more than 40 are shown in detail. EFA ¼ exploratory factor analysis;



C.-M. Chang et al. / Taiwanese Journal of Obstetrics & Gynecology 56 (2017) 210e216216
conversion of guanosine diphosphate (GTP) to guanosine triphos-
phate (GDP) initiated by guanyl nucleotide exchange factors [17].
ERBB2 is a member of the human epidermal growth factor receptor
family, consists of four receptor tyrosine kinases, can active PI3K or
other signaling pathways, and results in deregulated cell cycle
control [18]. Mackenzie and colleagues [19] using the Ion Torrent
PGM platform found that concurrent ERBB2 amplification and
KRAS mutation were observed in a substantial number of MOC
cases, suggesting that the prevalence of RAS alteration and striking
co-occurrence of pathway “double-hits” supports a critical role for
tumor progression in the MOC.

GTPase regulators (Rho or Ras guanyl nucleotide exchange fac-
tors), ERBB2, and PI3K signaling were the most deregulated func-
tions detected by the GSR model. The results of EFA further
disclosed that the protein tyrosine kinase activity, G-protein
coupled receptor pathway, oxidoreductase activity, cytokines, im-
mune response, and chromosome organization were also involved
in the pathogenesis of MOC, and the network in Figure 4 revealed
the evidence of extensive interactions among these deregulated
functions. The possible signaling cascade of MOC can be inferred
from the findings in our study: ligands, such as growth factors and
cytokines, bind to ERBB2 and initiate signaling downstream cas-
cades, including RAS and PI3K. The activation or deactivation of RAS
is switched by two conformational states regulated by GTPase-
activating proteins or guanyl nucleotide exchange factors. In case
of carcinogenesis of MOC, these GTPases were deregulated as a
result of RAS mutation. PI3K, activated by deregulated RAS, con-
verts phosphatidylinositol (4,5)-bisphosphate into phosphatidyli-
nositol (3,4,5)-trisphosphate. Phosphatidylinositol (3,4,5)-
trisphosphate, in turn, binds Akt and stimulates its kinase activity,
and leads to deregulated cell growth and proliferation.

In this study, we investigated MOC with the functionome
instead of the differentially expressed genes [20e24]. This
approach has several advantages. First, biological functions are
more easily understood than gene symbols, and second, conversion
of tens of thousands of gene expressions to approximately 1000
gene set-defined functions will reduce the complexity and noise of
data. Computation of the gene expression ranking in a gene set will
also take the gene interactions in a gene set into consideration.
However, the major limitation of this approach was false positivity,
such as the third most deregulated canonical pathway “Reactome
olfactory signaling pathway” in Table 3.

In conclusion, with the GSR indexes converted from the
microarray gene expression profiles downloaded from the publicly
available databases, the functionome analysis revealed the network
of MOC pathogenesis: in addition to the most significant aberra-
tions including GTPase regulator activity and ERBB2 signaling,
plenty of deregulation functions as well as the interactions,
including PI3K signaling, oxidoreductase activity, immune
response, channel activity, G-protein coupled receptor pathway,
protein tyrosine kinase, peptidase activity, regulation of translation,
and transport, were also involved in the pathogenesis of MOC.
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