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Objectives: To present the prenatal findings and the molecular cytogenetic analyses of a de novo inter-
stitial deletion of 1q23.3 encompassing PBX1 gene.
Case report: A 32-year-old woman (gravida 1, para 0) underwent amniocentesis at 26 weeks' gestation
because of constant small fetal kidneys on prenatal ultrasound. Chromosome microarray analysis (CMA)
detected a de novo deletion of 1.871 Mb at 1q23.3. The deletion encompassed 2 genes of PBX1 and LMX1A.
PBX1 haploinsufficiency had been reported to lead syndromic congenital anomalies of kidney and urinary
tract (CAKUT) in humans. Furthermore, at 31 weeks’ gestation, borderline oligohydramnios and
restricted fetal dimensions were revealed. Ultimately, the pregnancy was terminated at 32 weeks with a
1500-g female fetus presenting polydactyl of left hand.
Conclusions: The shared phenotypes between this case and the previously published prenatal cases
demonstrate that loss of function mutation in PBX1 should be suspicious in fetus with bilateral renal
hypoplasia, oligohydramnios and intrauterine growth retardation (IUGR).
© 2019 Taiwan Association of Obstetrics & Gynecology. Publishing services by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

CAKUT are common finding on fetal ultrasound and present in
3e7 out of 1000 births, accounting for 20e30% of birth defects [1].
CAKUT is the most common cause of end stage renal disease in
children, leading to high morbidity and mortality in these patients
[2,3]. Though the etiology of most cases is unknown, multiple lines
of evidence suggest a strong contribution of genetic defects, such as
some copy number variations (CNVs) and monogenic mutations.
Furthermore, it was reported that these genetic defects were
associated with developmental disorders that develop later in life,
especially neurodevelopment diseases, such as autism, schizo-
phrenia, epilepsy, intellectual disability, and others [4,5]. So,
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identification of the potential genetic defects in fetus with CAKUT is
important for prenatal diagnosis and genetic counseling.

Recently, multiple studies demonstrated association of PBX1
haploinsufficiency with syndromic CAKUT [6e9]. However, little is
known about the prenatal phenotype caused by PBX1 defects. Here,
we provide a detailed description of the phenotype in a fetus with
heterozygous PBX1 gene deletion.
Case presentation

A 32-year-old, grvida 1, para 0, woman was referred for ge-
netic counseling and amniocentesis at 26 weeks of gestation
because of small fetal kidneys discovered by prenatal ultrasound.
She and her 32-year-old husband were normal, healthy and non-
consanguineous, and there was no family history of congenital
malformations. In the first trimester ultrasound assessment, the
embryo had a normal shape and appearance. Noninvasive pre-
natal screening at 12 weeks of pregnancy showed normal risk of
aneuploidy. Ultrasound at 22þ6 weeks of gestation showed a
small size of right kidney (1.9 cm � 1.0 cm) and blurry left kidney.
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After three weeks, Level Ⅲ ultrasound at 25þ5 weeks of
gestation revealed that the size of left and right kidneys was
1.51 cm � 0.78 cm and 1.51 cm � 0.98 cm, respectively (Fig. 1).
The amniotic fluid amount was normal and other internal organs
were unremarkable.

In view of these findings, we decided to perform chromosome
microarray analysis (CMA) using the SNP Affymetrix® CytoScan™
750 K Array (Affymetrix® Inc., Santa Clara, CA, USA) with fetal DNA
extracted from uncultured amniocytes. The array has an average
space between two oligonucleotides of 4 kb. Scanningwas performed
by the Affymetrix® GeneChip Scanner 3000 7G (resolution
0.51e2.5 mm). The data analysis was conducted using the Affymetrix®

Chromosome Analysis Suite Software (ChAS), version 3.0, hg19. CMA
detected a 1.871 Mb heterozygous microdeletion at 1q23.3 with
genomic coordinates 163,444,997e165,316,065 (arr [hg19] 1q23.3
(163,444,997-165,316,065)x1), encompassing PBX1 and LMX1A genes
(Fig. 2). The deletion was confirmed using custom MLPA probes tar-
geted to PBX1 gene (Fig. 3). Both parents showednormal copynumber
at the same region. Thus, the fetal carried a de novo microdeletion.
Furthermore, no other clinical significant CNVs were identified.

After genetic counseling, the parents selected to temporary
continue the pregnancy. However, at 31 weeks of gestation, the size
of left and right kidneys was still small (left: 1.64 cm� 0.8 cm, right:
1.70 cm � 0.9 cm). Furthermore, ultrasound revealed borderline
oligohydramnios and restricted fetal dimensions: the amniotic fluid
index (AFI) was 7 cm, the bi-parietal distance (BPD) was 7.5 cm (�2
SD), the head circumference (HC) was 27.3 cm (�1.68 SD), the
abdominal circumference (AC) was 24.3 cm (�2.16 SD), and the
femur length (FL) was 5.5 cm (�1.67 SD).

In view of these findings, the parents accepted further genetic
counseling and decided to terminate the pregnancy at 32 weeks of
gestation at local hospital. The induced aborted fetal was female
and weighed 1.5 kg (~10th percentile). No macro phenotypic al-
terations except polydactyl of left hand were recognized. In
compliance with the parents’ wishes, neither a fetal autopsy nor
photograph was performed.

The ethics committee of Dongguan Maternal and Chindren
Hospital approved the study. Informed consent was obtained from
participants (husband and wife).
Fig. 1. Sonographic image of the fetus at 25þ5 weeks of gestation showing bil
Discussion

Interstitial deletions of the long arm of chromosome 1 described
by conventional cytogenetic techniques had showed that patients
with proximally located deletions (1q21-q25) presented develop-
mental delay, growth retardation, microbrachycephaly, abnormal-
ities of kidney and urinary tract, and hand anomalies [10,11]. With
molecular cytogenetic techniques especially chromosome micro-
array analysis (CMA), some of patients harboring microdeletions
with precise breakpoints were reported, which offered the oppor-
tunity to identify PBX1 as a promising candidate gene associated
with renal malformation [12,13]. In 2017, Le Tanno et al. reported
several de novo microdeletions at 1q23.3-q24.1 locus. Among of
these patients, the smallest overlapping region (SRO) focus on PBX1
gene, which is proposed to be relevant to syndromic CAKUT [6]; In
addition, Laurence et al. identified five de novo heterozygous loss of
function mutations in PBX1 gene or microdeletions involving the
PBX1 gene in 204 unrelated CAKUT patients [7]. Based on these
findings, it provides convincing evidence that PBX1 gene causes
CAKUT by haploinsufficiency mechanism.

PBX1 encodes a transcription factor which promotes
proteineprotein interaction and plays a crucial role in several
developmental processes. In human, PBX1 is constitutively expressed
inhumanbone-derived cells (HBDC) and is stronglyexpressed in fetal
kidneys and brain [6,14]. Patients with pathogenic PBX1 variants/
microdeletions showed pleiotropic developmental defects similar to
those in Pbx1�/� mice, including external ear anomalies, abnormal
branchial arch derivatives, heart malformations, diaphragmatic
hernia, renal hypoplasia and ambiguous genitalia [6e9,15]. Devel-
opmental delays and craniofacial dysmorphy were also reported
in patients who carried PBX1 gene mutations and deletions.

In order to analyze the genotypeephenotype relationships, we
summarized the genetic changes and phenotypes of 23 patients
described so far (See Supplemental Table 1). 16 with loss of function
allele showed more phenotypes of CAKUT, hearing impairment and
skull anomalies, whereas 7 patients with missense mutation
showed more complex phenotypes including cardiac defects, dia-
phragmatic eventration, and ambiguous genitalia. Difference was
also observed in prenatal phenotypes. Among reported patients
ateral small kidneys (left: 1.52 cm � 0.72 cm, right: 1.51 cm � 0.98 cm).



Fig. 3. CustomMLPA results of fetus (A) and parents (B: father; C: mother) confirming PBX1 deletion. The X-axis represents the probe size and the Y-axis represents the fluorescence
intensity. The first and fifth probe presents the PBX1 exon1 and exon3, respectively; other three are reference probes. ~50% decreased signal in test probes was observed in fetus.

Fig. 2. CMA profile of chromosome 1 showing the deleted region and the corresponding UCSC gene.
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with PBX1 defects, eight had clinical data during the pregnancies.
Four patients with loss of function allele presented bilateral renal
hypoplasia, hyperechogenicity, oligohydramnios and IUGR [6,7].
Other four with missense mutation presented with oligohy-
dramnios, increased nuchal folds, unilateral diaphragmatic even-
tration and bilateral dilated ureters. The phenotypic variability
observed in patients may be explained by allelic heterogeneity [9].
Our patient who carried a 1.8-Mb deletion encompassing PBX1
demonstrated similar phenotypes to those previously reported,
especially bilateral renal hypoplasia, oligohydramnios and IUGR.
Besides, polydactyly was noticed in our patient, five other patients
were also reported to have hand/foot anomaly, so, hand/foot
anomaly maybe a characteristic malformation. However, poly-
dactyly was not found in other five patients: three with clino-
dactyly and two with brachydactyly.

In our patient, another gene LMX1A, which encodes an evolu-
tionarily conserved transcription factor with an essential function
in neural development, was involved. In developing mouse, Lmxla
is predominantly expressed in the nervous system and otic vesicles
which later become restricted to non-sensory epithelia of the ear.
Lmxla�/� mouse showed congenital deafness, vestibular defects,
and neurological, skeletal, pigmentation, and reproductive system
abnormalities [16]. Recently, LMX1A missense mutations were
identified in patients with autosome recessive or dominant non-
syndromic hearing impairment [17,18]. In reported patients with
PBX1 defects, eight had hearing impairments, five of whom had
large deletion involving both PBX1 and LMX1A, so, it may remain to
determine the role of LMX1A in these five patients. However, no
genetic changes exclusively affecting LMX1A have been reported in
patients with anomalies beyond hearing impairment.

In conclusion, we provide a detailed description of the pheno-
type in a fetus with heterozygous PBX1 gene deletion. The shared
phenotypes between this case and the previously published pre-
natal cases demonstrate that loss of function mutation in PBX1
should be responsible for bilateral renal hypoplasia, oligohy-
dramnios and IUGR phenotype.
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