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ARTICLE INFO ABSTRACT

Article history: Objective: Ovarian endometrioma is a cyst composed of endometrial tissue and is present in 20%—40% of

Accepted 10 January 2019 patients with endometriosis. Endometriosis is an estrogen-dependent benign and chronic gynecological
disease that affects women of reproductive age. Studies have reported that tumor stem cells can be

Keywords: isolated from numerous tumor types. Emerging evidence has indicated that tumor stem cells may be

Zﬁn_liitradim responsible for the development of endometriosis and endometrial tumors. The present study investi-

gated the effects of 17B3-estradiol on levels of expression of stem cell markers and cell growth of human
mesenchymal stem cells derived from ovarian endometrioma (hOVEN-MSCs).
Materials and methods: hOVEN-MSCs were isolated from human ovarian endometrioma. The prolifera-
tion potential of hOVEN-MSCs was measured by the cumulative population doubling and colony-
formation efficiency. The gene expression of the hOVEN-MSCs was examined by the reverse
transcription-polymerase chain reaction analysis. Protein expression assays were performed using flow
cytometry and western blot analysis.
Results: This study demonstrated that hOVEN-MSCs can be isolated from ovarian endometrioma and
that 17f-estradiol was capable of increasing colony-forming efficiency and cell proliferation of these
cells. In addition, we found that 17f-estradiol not only increased the expression of the stem cell marker
OCT-4, but also increased the expression of endometrial tumor stem cell markers CD133 and ALDH1 in
hOVEN-MSCs.
Conclusion: The above results indicate an important role of 173-estradiol in cell growth of hOVEN-MSCs
concomitant with enhanced expression of stem cell markers. This effect of 178-estradiol related to stem
cell marker expression, if confirmed by further in vitro, in vivo studies, may be useful for developing new
strategies for prevention and treatment of endometriosis and endometrioma.

© 2019 Taiwan Association of Obstetrics & Gynecology. Publishing services by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction through retrograde menstruation, and subsequently attach to,

invade, and injure other tissues [1]. Evidence supporting the pre-

Endometriosis is an estrogen-dependent benign and chronic vailing theory of retrograde menstruation suggests that endome-

gynecological disorder that affects women of reproductive age. The trial mesenchymal stem cells (MSCs) may play a critical role in the
pathogenesis of endometriosis is poorly understood. Implantation pathogenesis of endometriosis [2—4].

theory suggests that viable endometrial cells are shed from the According to tumor stem cell theory, tumors are clonal origin

endometrium into the pelvic peritoneum or ovaries, possibly and consist of heterogeneous cell populations including tumor

stem cells. Tumor stem cells that initiate and sustain tumor

development have been reported for many tumor types [5—7].
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stem cells can be tumor-initiating target cells [9]. Emerging evi-
dence has indicated that tumor stem cell populations may be
involved in the development of endometriosis or endometrial tu-
mors [10]. Endometrial tumor stem cell markers have been iden-
tified, including CD133 [11,12] and ALDH1 [13,14].

Ovarian endometrioma is a cyst composed of endometrial tissue
and is present in 20%—40% of patients with endometriosis [1]. The
pathogenesis of endometriosis is multifactorial, and estrogens may
play a key role in its development and progression [15,16]. Previ-
ously, we reported that 17f-estradiol (an endogenous estrogen)
induced the emergence of a subpopulation of cells expressing
CD44"/Mighjcp24~/1°W preast tumor stem cell markers in a stem
cell-derived breast epithelial cell line [17] and promoted epithelial-
mesenchymal transition and tumor growth in estrogen receptor-
positive human breast epithelial stem cells with HER2 over-
expression [18]. Additionally, bisphenol A (an exogenous estrogen
known to be an endocrine disruptor) could enhance cell prolifer-
ation and colony-forming efficiency, induce COX-2 gene expression,
promote the migration and invasion of human uterine myoma
MSCs [19] and induced epithelial-mesenchymal transition medi-
ated by COX-2 up-regulation in human endometrial carcinoma cells
[20]. In this study, we examined the effect of 17B-estradiol on the
expression of tumor stem cell markers, colony-forming efficiency,
and growth rate of human ovarian endometrioma-derived MSCs.
The results might shed light on the origin and mechanism of
growth of endometrioma.

Materials and Methods

Isolation and culture of human stromal cells and MSCs derived from
ovarian endometrioma

The human stromal cells and mesenchymal stem cells (hOVEN-
MSCs) were developed and isolated from ovarian endometrioma.
These tissues were derived from patients undergoing surgery for
the treatment of endometriosis in the Department of Obstetrics and
Gynecology of Kuo General Hospital, Tainan, Taiwan. The use of
these tissues was approved by the hospital's Institutional Review
Board (IRB No: A-13-KO5 and B-18-K003). These tissues were
minced by sterile scissors and then digested with Type II collage-
nase for 60—90 min in a 37 °C incubator. After digestion, the cells
and cell aggregates were filtered serially through wire sieves with
different pore sizes (100 um, 70 pum and 40 um) to remove cell
aggregates and epithelial cells. These stromal cells were collected
and frozen for the following experiments. For isolation of hOVEN-
MSCs, stromal cells were seeded in triplicate plates (10-cm-diam-
eter) at cell density of 200 cells per dish. After incubation for 21
days, large colonies were isolated and trypsinized into single cells.
These cells were diluted and seeded in 96-well plates at the density
of about one cell per well. After culture for 14 days, proliferating
colonies derived from single cells were trypsinized and cultured in
a 10 cm diameter dish. The cells were allowed to grow in a modified
DMEM/F-12/MCDB 153 (2/1, v/v) medium with 10% fetal bovine
serum (FBS) until near confluence [2,21,22].

In vitro differentiation of hOVEN-MSCs

These hOVEN-MSCs were tested for differentiation potential, i.e.
adipogenesis and osteogenesis. The cells were first subcultured and
incubated in a DMEM medium with 10% FBS. The next day, differ-
entiation induction was initiated by changing the medium with
different supplementations. For adipogenesis, these hOVEN-MSCs
were plated at seeding density of 5 x 10* cells/cm? in 35-mm-
diameter dishes. The next day, cells were incubated in IDIl medium
for 2 days, then in I medium for 1 day. The cycle was repeated 4

times. IDII medium contains 3-isobutyl-1-methylxanthine
(500 puM), dexamethasone (1 uM), indomethacin (1 pM), and in-
sulin (10 pg/mL) in DMEM medium with 10% FBS. I medium is
DMEM medium supplemented with 10% FBS and insulin (10 pg/
mL). Lipid vacuoles developed within adipocytes after induction
were verified by Oil Red O staining (in red color). For osteogenesis,
these hOVEN-MSCs were plated at the seeding density of
5 x 10% cells/cm? in 35-mm-diameter dish. The next day, cells were
induced to differentiate in DAG medium for 2 weeks, with medium
change once every 3 days. The DAG medium contains dexametha-
sone (0.1 mM), L-ascorbic acid-2-phosphate (50 pM), and B-glyc-
erophosphate disodium (10 mM) in DMEM medium with 10% FBS.
The formation of calcified extracellular matrix by osteoblasts was
visible and can be confirmed by von Kossa staining (in black color)
[2,22].

Flow cytometry analysis of protein expression

The cells on plates were washed twice by ice-cold phosphate
buffered saline (PBS) and removed by trypsinization. Single cells
were obtained by filtration through a 40-pm nylon mesh. Anti-
bodies CD34, CD44, CD45, CD90, CD105, CD133, Notch1, Musashi-1,
ALDH1, HLA-DR, and OCT-4 were used for surface and intracellular
staining according to the manufacturer's recommendations. The
labeled cells were then washed twice, resuspended in PBS, and
analyzed using flow cytometry. Results are presented as mean + SD
of the triplicate (N = 3).

Immunofluorescence staining

For immunofluorescence staining, the cells grown in 35-mm-
diameter dish were washed with PBS and fixed by 4% para-
formaldehyde in PBS for 20 min. After rinsing with PBS, the cells
were permeabilized (0.5% triton x-100, 2% BSA and 0.05% NaN3 in
PBS) for 10 min. The cells were then incubated with the primary
antibody (anti-Notch1, anti-Musashi-1, anti-OCT-4, anti-CD133,
and anti-ALDH1) in PBS/triton/BSA at 25 °C overnight. The
following day, the cells were incubated with a secondary antibody
conjugated with PE in PBS/triton/BSA buffer for 1 h at 25 °C. 4,6-
diamino-2-phenylindole (DAPI) was utilized to stain the nuclei
under the condition of protection from light. Images were obtained
on a fluorescence microscope after washing three times with PBS.

Colony-formation assay

To determine the effect of 17B-estradiol on clonogenic ability,
hOVEN-MSCs were plated at a density of 500 viable cells per 10-
cm-diameter dish in medium with or without 1 uM of 17f3-estra-
diol (N = 6). After incubation for 10 days, colonies were labeled
when a clone had more than 40—60 cells. The labeled colonies were
further cultured for 21 days until the cell colonies grew large
enough to be visualized. These colonies on the culture dishes were
stained with 0.5% crystal violet and counted for comparison of
colony-forming efficiency.

Cell proliferation assay

The growth rate of the cell culture was calculated by dividing the
cumulative population doubling level (CPDL) by days of culture
(N = 6). The CPDL in a continual subculture and growth from a
known number of cells (1 x 10° cells) were calculated using the
equation In(Nf/Ni)/In2, where Ni and Nf are initial and final cell
numbers, respectively, and In is the natural logarithm.
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Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was extracted from cells (5 x 10° cells) using 1 mL
TRIzol reagent. RNA (1 pg) was transcribed into ¢cDNA using a
reverse transcription system kit and ¢cDNA was amplified with
gene-specific primers in a polymerase chain reaction (PCR) ma-
chine. The primers were B-ACTIN (forward, 5- ATGA-
TATCGCCGCGCTCGTCGTC; reverse, 5- CGCTCGGCCGTGGTGGTGAA),
CD133 (forward, 5- TCTTGACCGACTGAGACCCAAC; reverse, 5-
ACTTGATGGATGCACCAAGCAC), ALDH1 (forward, 5-
TTGGAATTTCCCGTTGGTTA; reverse, 5- CTGTAGGCCCA-
TAACCAGGA), and OCT-4 (forward, 5-GAGCAAAACCCGGAGGAGT;
reverse, 5-TTCTCTTTCGGGCCTGCAC). The PCR was performed in a
PCR machine. The protocol was as follows, sequentially: 1 min
denaturation at 95 °C; 30 reaction cycles each with 30 s of dena-
turation at 95 °C; 30 s of annealing at 52 °C; and extension at 72 °C
for 1 min. The last polymerization step was performed at 72 °C for
10 min. The amplified products were separated on 2% agarose gel
and stained with ethidium bromide. For the comparison of cell
lines, B-ACTIN was used as a reference gene to normalize mRNA
levels, and the same protocol and conditions were used. Results are
presented as mean + SD of the triplicate (N = 3) and were statis-
tically tested.

Western blotting

The proteins were extracted with 20% SDS lysis solution con-
taining several protease and phosphatase inhibitors (1 mM phe-
nylmethylsulfonyl fluoride, 1 mM leupeptin, 1 mM antipain, 0.1 mM
aprotinin, 0.1 mM sodium orthovanadate, 5 mM sodium fluoride).
Protein concentrations were measured using Biorad Protein
Quantification kit. Same amounts of protein (15 pg/lane) were
separated by 12% SDS-PAGE and transferred from the gel to PVDF
membranes. Immunoblotting was carried out using monoclonal
antibody (anti-OCT-4, anti-CD133, anti-ALDH1, and anti-B-ACTIN).
This was then followed by incubation with horseradish peroxidase-
conjugated secondary antibody and detected with the ECL chemi-
luminescent detection reagent. The membranes were exposed to X-
ray film for 15 s to 1 min. For the comparison of cell lines, 3-ACTIN
expression was used as a reference to standardize protein amount,
and the same protocol and conditions were used. Results are pre-
sented as mean + SD of the triplicate (N = 3) and were statistically
tested.

Statistical analysis

Results shown were obtained from at least three separate ex-
periments. Statistical analyses were performed using Student's t-
test for comparison of two different treatments. Data represented
the mean + standard deviation. P values < 0.05 were considered
statistically significant.

Results

Isolation and characterization of human mesenchymal stem cells
derived from ovarian endometrioma (hOVEN-MSCs)

Human stromal cells and hOVEN-MSCs were developed and
isolated from human ovarian endometrioma as described in the
Materials and Methods section and depicted in Fig. 1A. The stromal
cell morphology was large and flat, whereas the hOVEN-MSCs
morphologically resembled fibroblasts (Fig. 1A). The ability to
differentiate into multiple mesenchymal lineages is a qualifying
criterion for cells to be considered as mesenchymal stem cells
(MSCs). After induction with specific medium supplementations, as

described in the Materials and Methods section, the hOVEN-MSCs
were found to differentiate into adipocytes and osteoblasts as
revealed by positive staining with Oil Red O (for lipid droplets) and
von Kossa (for calcified extracellular matrix) staining, respectively
(Fig. 1B). Flow cytometry analysis revealed the expression of MSC
markers CD44, CD90 and CD105, as well as the regulation of cell
differentiation and self-renewal from stem cell marker Notch1 and
endometriosis and endometrial carcinoma tissue marker Musashi-
1[23,24] in stromal cells and hOVEN-MSCs. The expression of stem
cell markers and carcinoma tissue marker was higher in hOVEN-
MSCs than in stromal cells. These hOVEN-MSCs did not show
expression of cell surface markers, including CD34, CD45, and HLA-
DR, which are specific markers for hematopoietic stem cells, and
leukocytes (Fig. 2A). These hOVEN-MSCs clearly show characteris-
tics of MSCs as defined by the International Society for Cellular
Therapy [25], namely, 1) plastic-adherent; 2) expression of CD44,
CD90 and CD105 and non-expression of CD34, CD45, and HLA-DR;
and 3) the ability to differentiate into adipocytes and osteoblasts
in vitro (Fig. 1 and 2A). By immunofluorescence staining, in addition
to the expression of Notch1, Musashi-1 and OCT-4, hOVEN-MSCs
were also found to express two major endometrial tumor stem cell
markers CD133 and ALDH1 (Fig. 2B).

176-estradiol enhanced growth rate and clonogenic ability of
hOVEN-MSCs

The 17B-estradiol-treated hOVEN-MSCs demonstrated a faster
growth rate than untreated hOVEN-MSCs (0.83 + 0.06 and
0.66 + 0.04 population doubling per day, respectively) (Fig. 3A). In
addition to enhancing cell growth, 17p-estradiol enhanced the
clonogenic properties of the hOVEN-MSCs. After 21 days of single-
cell plating, the 17p-estradiol-treated hOVEN-MSCs exhibited 2.4-
fold higher colony-forming efficiency compared to untreated
hOVEN-MSCs (32.7% + 5% and 13.5% + 4%, respectively) (Fig. 3B).
The effect of 17B-estradiol on cell proliferation and colony-forming
efficiencies were reversed by the estrogen antagonist ICI 182,780
(Fig. 3). These results clearly indicate that 17B-estradiol (1 uM)
enhanced the colony-forming ability and growth rate of hOVEN-
MSCs.

176-estradiol increased expression tumor stem cell markers in
hOVEN-MSCs

We examined the expression of OCT-4 and two major endo-
metrial tumor stem cell markers, CD133 and ALDH]1, in hOVEN-
MSCs with or without 17B-estradiol-treatment using RT-PCR
analysis. The results revealed that the expressions of OCT-4,
CD133, and ALDH1 were significantly higher in 17B-estradiol-
treated hOVEN-MSCs than the control without17B-estradiol treat-
ment (2.25-, 2.38- and 1.55-fold increases, respectively, for OCT-4,
CD133, and ALDH1; Fig. 4A). We then conducted experiments using
flow cytometry analysis to determine if 17p-estradiol increased the
expression of tumor stem cell markers in hOVEN-MSCs. The anal-
ysis indicated that expressions of OCT-4, CD133, and ALDH1 in 17§-
estradiol-treated hOVEN-MSCs were 1.17-, 1.25-, and 1.48-fold
higher than in untreated hOVEN-MSCs, respectively (Fig. 4B). To
confirm these results from RT-PCR and flow cytometry analysis,
hOVEN-MSCs and 17B-estradiol-treated hOVEN-MSCs were tested
for the protein expression of OCT-4, CD133, and ALDH1 by western
blot analysis. The results, indeed, showed that the protein expres-
sion of OCT-4, CD133, and ALDH1 were statistically significantly
higher in 17B-estradiol-treated hOVEN-MSCs than in hOVEN-MSCs
without 17f-estradiol treatment (1.83-, 2.93- and 1.32-fold in-
creases, respectively, for OCT-4, CD133, and ALDH1; Fig. 4C). The
above results consistently demonstrate that 17f-estradiol
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Fig. 1. Isolation and identification of human MSCs derived from ovarian endometrioma (hOVEN-MSCs). (A) Illustration of the stepwise isolation procedure of stromal cells and MSCs
from ovarian endometrioma. Stromal cell morphology was large and flat, whereas the morphology of hOVEN-MSCs resembled fibroblasts. (B) hOVEN-MSCs were induced to
differentiate into adipocytes (stained red by using Oil Red O staining of lipid droplets) and osteoblasts (stained black by using von Kossa staining of calcified extracellular matrix).
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Fig. 2. Expression of MSC and tumor stem cell markers in hOVEN-MSCs. (A) Flow cytometry analyses revealed that the expressions of CD44, CD90, CD105, Notch1, and Musashi-1
were higher in hOVEN-MSCs than that in stromal cells. hOVEN-MSCs did not show the expression of CD34, CD45, and HLA-DR. The values are presented as mean + SD of the
triplicate (N = 3) (B) hOVEN-MSCs expressed Notch1, Musashi-1, OCT-4, CD133 and ALDH1 (red) as detected by immunofluorescence staining. DAPI staining (blue) shows the
locations of the nuclei. Upper panels, observed under a fluorescence microscope; lower panels, the corresponding phase images.

upregulated OCT-4, CD133, and ALDH1 expression in hOVEN-MSCs,
the increases were especially significant for the former 2 genes
(more than 2-fold increase by RT-PCR and western blot analysis).

Discussion

Endometriosis is a common chronic gynecological disorder
defined as the presence of ectopic endometrial tissues, mainly in
the pelvic peritoneum and ovary [1]. Endometriosis is a stem cell
disease, and several theories have been proposed regarding its
pathogenesis [2—4]. MSCs have been derived from various tissues
and may be used for various clinical applications because of their
high potential for differentiation into various cell types and ready

expansion of cell populations in vitro. In this study, we character-
ized hOVEN-MSCs with regard to cell proliferation and expression
of tumor stem cell markers in response to 173-estradiol. The results
indicate that 17f-estradiol increased cells growth rate, colony-
forming efficiency, and OCT-4, CD133, and ALDH1 expression in
hOVEN-MSCs. Since these cells with stem cell characteristics were
derived from endometrioma, they are qualified as tumor stem cells.
Future in vivo tumorigenicity study of these cells should provide
convincing supporting evidence.

Human endometrium is a dynamic tissue that regenerates, dif-
ferentiates, and shed in more than 400 cycles during the repro-
ductive phase of a woman's life. Therefore, endometrial stem cells
exhibit regenerative capacity. The continual proliferative and
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without 17B-estradiol (N = 6). The increases induced by 17f-estradiol treatment may be reversed by treatment with estrogen antagonist ICI 182,780 (ICI). *P < 0.05.
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Fig. 4. 17B-estradiol increased the expression of tumor stem cells markers in hOVEN-MSCs. Treatment of hOVEN-MSCs with 178-estradiol (1 uM) increased the expression of OCT-4,
CD133, and ALDH1 measured by (A) mRNA expression using RT-PCR (N = 3) and protein expression measured using (B) flow cytometry analysis (N = 3) and (C) western blot analysis
(N = 3). (A) mRNA and (C) protein expression were determined by densitometry. B-ACTIN served as an equal loading control. The results are presented as the ratios of the values for
17pB-estradiol-treated (+) hOVEN-MSCs to those of untreated (—) hOVEN-MSCs. *P < 0.05.

regenerative traits of endometrial stem cells may contribute to
endometriosis formation. The hOVEN-MSCs we isolated indeed
possess these characteristics of MSCs as defined by the Interna-
tional Society for Cellular Therapy [25] and shown by our results,
namely, 1) capacity to adhere to plastic, 2) expression of MSC
markers (i.e,, CD44, CD90 and CD105) (Fig. 2A) and stem cell
markers (i.e., Notchl and OCT-4) (Fig. 2B), and 3) the ability to
differentiate into adipocytes and osteoblasts in vitro (Fig. 1). In

addition, these cells expressed endometriosis and endometrial
carcinoma tissue marker, Musashi-1 (23, 24) (Fig. 2B).

Several in vitro studies have reported that estrogen act as pro-
liferation and differentiation agents in endometrial cells [26] and
accelerate the progression of endometriosis by upregulating B-
catenin expression [16]. Tumor stem cells have been isolated from
various human tumor tissues [6,7]|. Endometrial tumor stem cell
markers, including CD133 and ALDH1, have been identified in
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previous research [11—14]. In addition to identification through
specific markers, tumor stem cells may be identified by their ca-
pacities to self-renew, generate new tumors, and increase tumor
migration and invasion [27]. The results of this study indicate that
17B-estradiol enhanced the expression of endometrial tumor stem
cell markers (Fig. 4), cell proliferation and colony-forming ability
(Fig. 3) in hOVEN-MSCs.

OCT-4, a member of the POU domain transcription factor family,
plays a key role in the regulation of self-renewal and pluripotency
in embryonic stem cells, germ cells, and adult stem cells [28,29],
whereas Nanog is a homeobox gene and plays a critical role in
maintaining self-renewal and the undifferentiated state of plurip-
otent stem cells [30]. In vitro studies have revealed that the elevated
expression of OCT-4 and Sox-2 in human endometrial cells
contributed to reprogramming of these cells into induced plurip-
otent stem cells, indicating that OCT-4 and Sox-2 are stemness-
related factors in the human endometrium [31]. In our previous
study, the ectopic expression of OCT-4 in amniotic fluid MSCs
simultaneously increased the expression of the three most crucial
pluripotent genes: OCT-4, Nanog, and Sox-2 [32]. Several other
studies have demonstrated that OCT-4 is expressed in normal hu-
man endometrium, ectopic endometrium, and endometrial cancer
[33,34]. Our previous study also revealed OCT-4 expression in hu-
man ectopic endometrial MSCs [2]. In addition, aberrant OCT-4
expression promotes cell migration in endometriosis [34] and
regulates epithelial-mesenchymal transition in colorectal [35] and
ovarian cancer cells [36]. Moreover, Au et al. demonstrated that
TGF-Bf1 promotes cell migration through OCT-4 expression in
endometriosis [37].

In summary, we have isolated human endometrial tumor stem
cells (hOVEN-MSCs) that showed mesenchymal stem cell charac-
teristics and expressed OCT-4, ALDH1, CD133 and Musashi-1. The
expression of Musashi-1 indicated the endometrioma nature of
these cells. 17fB-estradiol treatment was found to increase the
expression of the former 3 genes and promote the growth rate and
colony-forming efficiency, indicating a role of estrogen in the
growth of these tumors. These results in conjunction with future
in vivo studies might provide new strategies for prevention and
treatment of endometriosis and endometrioma.
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